{"title":"在谷歌地球引擎中利用哨兵-2 和 VIIRS/MODIS 主动火灾绘制全球烧毁地区地图的自动程序","authors":"Aitor Bastarrika , Armando Rodriguez-Montellano , Ekhi Roteta , Stijn Hantson , Magí Franquesa , Leyre Torre , Jon Gonzalez-Ibarzabal , Karmele Artano , Pilar Martinez-Blanco , Amaia Mesanza , Jesús A. Anaya , Emilio Chuvieco","doi":"10.1016/j.isprsjprs.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the spatial and temporal trends of burned areas (BA) on a global scale offers a comprehensive view of the underlying mechanisms driving fire incidence and its influence on ecosystems and vegetation recovery patterns over extended periods. Such insights are invaluable for modeling fire emissions and the formulation of strategies for post-fire rehabilitation planning.</p><p>Previous research has provided strong evidence that current global BA products derived from coarse spatial resolution data underestimates global burned areas. Consequently, there is a pressing need for global high-resolution BA products. Here, we present an automatic global burned area mapping algorithm (Sentinel2BAM) based on Sentinel-2 Level-2A imagery combined with Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectrometer (MODIS) active fire data. The algorithm employs a Random Forest Model trained by active fires to predict BA probabilities in each 5-day Normalized Burn Ratio (NBR) index-based temporal composites. In a second step, a time-series and object-based analysis of the estimated BA probabilities allows burned areas to be detected on a quarterly basis. The algorithm was implemented in Google Earth Engine (GEE) and applied to 576 Sentinel-2 tiles corresponding to 2019, distributed globally, to assess its ability to map burned areas across different ecosystems. Two validation sources were employed: 21 EMSR Copernicus Emergency Service perimeters obtained using high spatial resolution (<10 m) data (EMSR21) located in the Mediterranean basin and 50 20x20 km global samples selected by stratified sampling with Sentinel-2 at 10 m spatial resolution (GlobalS50). Additionally, 105 Landsat-based long sample units (GlobalL105), were employed to compare the performance of the Sentinel2BAM algorithm against the FIRECCI51 and MCD64A1 global products. Overall accuracy metrics for the Sentinel2BAM algorithm, derived from validation sources highlight higher commission (CE) than omission (OE) errors (CE=10.3 % and OE=7.6 % when using EMSR21 as reference, CE=18.9 % and OE=9.5 % when using Global S50 as reference), while GlobalL105-based inferenced global comparison metrics show similar patterns (CE=22.5 % and OE=13.4 %). Results indicate differences across ecosystems: forest fires in tropical and temperate biomes exhibit higher CE, mainly due to confusion between burned areas and croplands. According to GlobalL105, Sentinel2BAM shows greater accuracy globally (CE=22.5 %, OE=13.4 %) compared to FIRECCI51 (CE=20.8 %, OE=46.5 %) and MCD64A1 (CE=17.5 %, OE=53.1 %), substantially improving the detection of small fires and thereby reducing omission errors. The strengths and weaknesses of the algorithm are thoroughly addressed, demonstrating its potential for global application.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 232-245"},"PeriodicalIF":10.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automatic procedure for mapping burned areas globally using Sentinel-2 and VIIRS/MODIS active fires in Google Earth Engine\",\"authors\":\"Aitor Bastarrika , Armando Rodriguez-Montellano , Ekhi Roteta , Stijn Hantson , Magí Franquesa , Leyre Torre , Jon Gonzalez-Ibarzabal , Karmele Artano , Pilar Martinez-Blanco , Amaia Mesanza , Jesús A. Anaya , Emilio Chuvieco\",\"doi\":\"10.1016/j.isprsjprs.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the spatial and temporal trends of burned areas (BA) on a global scale offers a comprehensive view of the underlying mechanisms driving fire incidence and its influence on ecosystems and vegetation recovery patterns over extended periods. Such insights are invaluable for modeling fire emissions and the formulation of strategies for post-fire rehabilitation planning.</p><p>Previous research has provided strong evidence that current global BA products derived from coarse spatial resolution data underestimates global burned areas. Consequently, there is a pressing need for global high-resolution BA products. Here, we present an automatic global burned area mapping algorithm (Sentinel2BAM) based on Sentinel-2 Level-2A imagery combined with Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectrometer (MODIS) active fire data. The algorithm employs a Random Forest Model trained by active fires to predict BA probabilities in each 5-day Normalized Burn Ratio (NBR) index-based temporal composites. In a second step, a time-series and object-based analysis of the estimated BA probabilities allows burned areas to be detected on a quarterly basis. The algorithm was implemented in Google Earth Engine (GEE) and applied to 576 Sentinel-2 tiles corresponding to 2019, distributed globally, to assess its ability to map burned areas across different ecosystems. Two validation sources were employed: 21 EMSR Copernicus Emergency Service perimeters obtained using high spatial resolution (<10 m) data (EMSR21) located in the Mediterranean basin and 50 20x20 km global samples selected by stratified sampling with Sentinel-2 at 10 m spatial resolution (GlobalS50). Additionally, 105 Landsat-based long sample units (GlobalL105), were employed to compare the performance of the Sentinel2BAM algorithm against the FIRECCI51 and MCD64A1 global products. Overall accuracy metrics for the Sentinel2BAM algorithm, derived from validation sources highlight higher commission (CE) than omission (OE) errors (CE=10.3 % and OE=7.6 % when using EMSR21 as reference, CE=18.9 % and OE=9.5 % when using Global S50 as reference), while GlobalL105-based inferenced global comparison metrics show similar patterns (CE=22.5 % and OE=13.4 %). Results indicate differences across ecosystems: forest fires in tropical and temperate biomes exhibit higher CE, mainly due to confusion between burned areas and croplands. According to GlobalL105, Sentinel2BAM shows greater accuracy globally (CE=22.5 %, OE=13.4 %) compared to FIRECCI51 (CE=20.8 %, OE=46.5 %) and MCD64A1 (CE=17.5 %, OE=53.1 %), substantially improving the detection of small fires and thereby reducing omission errors. The strengths and weaknesses of the algorithm are thoroughly addressed, demonstrating its potential for global application.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 232-245\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003307\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003307","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
An automatic procedure for mapping burned areas globally using Sentinel-2 and VIIRS/MODIS active fires in Google Earth Engine
Understanding the spatial and temporal trends of burned areas (BA) on a global scale offers a comprehensive view of the underlying mechanisms driving fire incidence and its influence on ecosystems and vegetation recovery patterns over extended periods. Such insights are invaluable for modeling fire emissions and the formulation of strategies for post-fire rehabilitation planning.
Previous research has provided strong evidence that current global BA products derived from coarse spatial resolution data underestimates global burned areas. Consequently, there is a pressing need for global high-resolution BA products. Here, we present an automatic global burned area mapping algorithm (Sentinel2BAM) based on Sentinel-2 Level-2A imagery combined with Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging Spectrometer (MODIS) active fire data. The algorithm employs a Random Forest Model trained by active fires to predict BA probabilities in each 5-day Normalized Burn Ratio (NBR) index-based temporal composites. In a second step, a time-series and object-based analysis of the estimated BA probabilities allows burned areas to be detected on a quarterly basis. The algorithm was implemented in Google Earth Engine (GEE) and applied to 576 Sentinel-2 tiles corresponding to 2019, distributed globally, to assess its ability to map burned areas across different ecosystems. Two validation sources were employed: 21 EMSR Copernicus Emergency Service perimeters obtained using high spatial resolution (<10 m) data (EMSR21) located in the Mediterranean basin and 50 20x20 km global samples selected by stratified sampling with Sentinel-2 at 10 m spatial resolution (GlobalS50). Additionally, 105 Landsat-based long sample units (GlobalL105), were employed to compare the performance of the Sentinel2BAM algorithm against the FIRECCI51 and MCD64A1 global products. Overall accuracy metrics for the Sentinel2BAM algorithm, derived from validation sources highlight higher commission (CE) than omission (OE) errors (CE=10.3 % and OE=7.6 % when using EMSR21 as reference, CE=18.9 % and OE=9.5 % when using Global S50 as reference), while GlobalL105-based inferenced global comparison metrics show similar patterns (CE=22.5 % and OE=13.4 %). Results indicate differences across ecosystems: forest fires in tropical and temperate biomes exhibit higher CE, mainly due to confusion between burned areas and croplands. According to GlobalL105, Sentinel2BAM shows greater accuracy globally (CE=22.5 %, OE=13.4 %) compared to FIRECCI51 (CE=20.8 %, OE=46.5 %) and MCD64A1 (CE=17.5 %, OE=53.1 %), substantially improving the detection of small fires and thereby reducing omission errors. The strengths and weaknesses of the algorithm are thoroughly addressed, demonstrating its potential for global application.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.