Yu-Tzu Huang, Daniel Yen-Hsun Chou, Chung-Che Chou, Chin-Hsiung Loh
{"title":"带滑动板的 3 层钢结构建筑振动台试验数据驱动的结构健康监测","authors":"Yu-Tzu Huang, Daniel Yen-Hsun Chou, Chung-Che Chou, Chin-Hsiung Loh","doi":"10.1155/2024/3412305","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Data-driven structural health monitoring (SHM) is an approach which relies on the information contained in the data and through signal analysis techniques captures the features, variations, and uncertainties that data contain. This paper presents the response of shaking table tests of a full-scale, 3-story building with sliding slabs connected by horizontal buckling-restrained braces for energy dissipation. First, the global dynamic characteristics of the structure were identified from a series of the building response data under different intensity level of base excitations. The variation of the identified modal parameters, such as the mode frequencies and modal shapes, was discovered. The influence of sliding slabs on the dynamic characteristics of the frame was also investigated through the measured response and the equation of motion with six degree of freedom systems. Comparison on the achieved interstory stiffness due to the implementation of sliding slabs and the fixed (locked up) slab was examined. The mechanism and dynamic characteristics of sliding slabs, including energy dissipation of the friction force, BRB hysteresis behavior, and unintended damping force during strong base excitation were analyzed directly using the ARX/recursive model. The extracted unintended damping force performed like a friction hysteretic response, which needs to be considered for frame modeling in shaking table tests. The findings through the data analysis have clarified the important aspects of sliding slabs and demonstrated the benefits and applicability of sliding slabs on reducing the frame response.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3412305","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Structural Health Monitoring on Shaking Table Tests of a 3-Story Steel Building with Sliding Slabs\",\"authors\":\"Yu-Tzu Huang, Daniel Yen-Hsun Chou, Chung-Che Chou, Chin-Hsiung Loh\",\"doi\":\"10.1155/2024/3412305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Data-driven structural health monitoring (SHM) is an approach which relies on the information contained in the data and through signal analysis techniques captures the features, variations, and uncertainties that data contain. This paper presents the response of shaking table tests of a full-scale, 3-story building with sliding slabs connected by horizontal buckling-restrained braces for energy dissipation. First, the global dynamic characteristics of the structure were identified from a series of the building response data under different intensity level of base excitations. The variation of the identified modal parameters, such as the mode frequencies and modal shapes, was discovered. The influence of sliding slabs on the dynamic characteristics of the frame was also investigated through the measured response and the equation of motion with six degree of freedom systems. Comparison on the achieved interstory stiffness due to the implementation of sliding slabs and the fixed (locked up) slab was examined. The mechanism and dynamic characteristics of sliding slabs, including energy dissipation of the friction force, BRB hysteresis behavior, and unintended damping force during strong base excitation were analyzed directly using the ARX/recursive model. The extracted unintended damping force performed like a friction hysteretic response, which needs to be considered for frame modeling in shaking table tests. The findings through the data analysis have clarified the important aspects of sliding slabs and demonstrated the benefits and applicability of sliding slabs on reducing the frame response.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3412305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3412305\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3412305","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Data-Driven Structural Health Monitoring on Shaking Table Tests of a 3-Story Steel Building with Sliding Slabs
Data-driven structural health monitoring (SHM) is an approach which relies on the information contained in the data and through signal analysis techniques captures the features, variations, and uncertainties that data contain. This paper presents the response of shaking table tests of a full-scale, 3-story building with sliding slabs connected by horizontal buckling-restrained braces for energy dissipation. First, the global dynamic characteristics of the structure were identified from a series of the building response data under different intensity level of base excitations. The variation of the identified modal parameters, such as the mode frequencies and modal shapes, was discovered. The influence of sliding slabs on the dynamic characteristics of the frame was also investigated through the measured response and the equation of motion with six degree of freedom systems. Comparison on the achieved interstory stiffness due to the implementation of sliding slabs and the fixed (locked up) slab was examined. The mechanism and dynamic characteristics of sliding slabs, including energy dissipation of the friction force, BRB hysteresis behavior, and unintended damping force during strong base excitation were analyzed directly using the ARX/recursive model. The extracted unintended damping force performed like a friction hysteretic response, which needs to be considered for frame modeling in shaking table tests. The findings through the data analysis have clarified the important aspects of sliding slabs and demonstrated the benefits and applicability of sliding slabs on reducing the frame response.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.