Himela Moitra, Sumit Pathak, Aditya K. Dagar, R. P. Rajasekhar, Satadru Bhattacharya, Moumita Akuria, Saibal Gupta
{"title":"剖析月球硅质构造--努比亚海狼坑群及其对月球早期硅质岩浆活动的影响","authors":"Himela Moitra, Sumit Pathak, Aditya K. Dagar, R. P. Rajasekhar, Satadru Bhattacharya, Moumita Akuria, Saibal Gupta","doi":"10.1029/2023JE008206","DOIUrl":null,"url":null,"abstract":"<p>Silicic lithologies on planetary surfaces indicate magmatic evolutionary processes in their interiors. The Wolf crater complex within Mare Nubium on the Moon is one such silicic construct associated with a high thorium anomaly. This study integrates morphological, compositional, chronological and gravity anomaly analyses of high-resolution data from various lunar missions to establish this construct as a silicic volcanic caldera. Lobate flows with steeply sloping fronts indicate that the crater rims comprise high-viscosity silicic lavas, while the structurally controlled inner crater walls suggest caldera collapse triggered by magma depletion. In the crater rims, low Christiansen Feature position values reaffirm the presence of silicic lithologies, consistent with the low gravity anomaly signature beneath the complex, while spectroscopic data reveal low mafic mineral abundances and negligible hydration features. Chronological analyses yield silicic volcanism ages coeval with surrounding mare basalts (3.8–3.6 Ga), while intra-caldera basalts have 2.36–2.02 Ga ages, indicating prolonged magmatism in this region. Melting of suitable crustal protoliths like alkali gabbronorite/monzogabbro/troctolite by basaltic underplating is inferred to have generated silicic magmas that formed the Wolf volcanic complex, instead of basaltic magma fractionation or silicate-liquid immiscibility processes. Large impacts during the Late Heavy Bombardment may have enhanced partial melting of the mantle and created crustal fractures that facilitated the ascent of viscous silicic melts through the lunar crust. Contemporaneous existence of suitable protoliths and adequate crustal pathways for magma ascent may have controlled silicic volcanism on the Moon, and can explain the sporadic occurrence and overlapping ages of the lunar silicic constructs.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008206","citationCount":"0","resultStr":"{\"title\":\"Anatomy of a Lunar Silicic Construct—The Wolf Crater Complex, Mare Nubium and Implications for Early Silicic Magmatism on the Moon\",\"authors\":\"Himela Moitra, Sumit Pathak, Aditya K. Dagar, R. P. Rajasekhar, Satadru Bhattacharya, Moumita Akuria, Saibal Gupta\",\"doi\":\"10.1029/2023JE008206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicic lithologies on planetary surfaces indicate magmatic evolutionary processes in their interiors. The Wolf crater complex within Mare Nubium on the Moon is one such silicic construct associated with a high thorium anomaly. This study integrates morphological, compositional, chronological and gravity anomaly analyses of high-resolution data from various lunar missions to establish this construct as a silicic volcanic caldera. Lobate flows with steeply sloping fronts indicate that the crater rims comprise high-viscosity silicic lavas, while the structurally controlled inner crater walls suggest caldera collapse triggered by magma depletion. In the crater rims, low Christiansen Feature position values reaffirm the presence of silicic lithologies, consistent with the low gravity anomaly signature beneath the complex, while spectroscopic data reveal low mafic mineral abundances and negligible hydration features. Chronological analyses yield silicic volcanism ages coeval with surrounding mare basalts (3.8–3.6 Ga), while intra-caldera basalts have 2.36–2.02 Ga ages, indicating prolonged magmatism in this region. Melting of suitable crustal protoliths like alkali gabbronorite/monzogabbro/troctolite by basaltic underplating is inferred to have generated silicic magmas that formed the Wolf volcanic complex, instead of basaltic magma fractionation or silicate-liquid immiscibility processes. Large impacts during the Late Heavy Bombardment may have enhanced partial melting of the mantle and created crustal fractures that facilitated the ascent of viscous silicic melts through the lunar crust. Contemporaneous existence of suitable protoliths and adequate crustal pathways for magma ascent may have controlled silicic volcanism on the Moon, and can explain the sporadic occurrence and overlapping ages of the lunar silicic constructs.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008206\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008206\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008206","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Anatomy of a Lunar Silicic Construct—The Wolf Crater Complex, Mare Nubium and Implications for Early Silicic Magmatism on the Moon
Silicic lithologies on planetary surfaces indicate magmatic evolutionary processes in their interiors. The Wolf crater complex within Mare Nubium on the Moon is one such silicic construct associated with a high thorium anomaly. This study integrates morphological, compositional, chronological and gravity anomaly analyses of high-resolution data from various lunar missions to establish this construct as a silicic volcanic caldera. Lobate flows with steeply sloping fronts indicate that the crater rims comprise high-viscosity silicic lavas, while the structurally controlled inner crater walls suggest caldera collapse triggered by magma depletion. In the crater rims, low Christiansen Feature position values reaffirm the presence of silicic lithologies, consistent with the low gravity anomaly signature beneath the complex, while spectroscopic data reveal low mafic mineral abundances and negligible hydration features. Chronological analyses yield silicic volcanism ages coeval with surrounding mare basalts (3.8–3.6 Ga), while intra-caldera basalts have 2.36–2.02 Ga ages, indicating prolonged magmatism in this region. Melting of suitable crustal protoliths like alkali gabbronorite/monzogabbro/troctolite by basaltic underplating is inferred to have generated silicic magmas that formed the Wolf volcanic complex, instead of basaltic magma fractionation or silicate-liquid immiscibility processes. Large impacts during the Late Heavy Bombardment may have enhanced partial melting of the mantle and created crustal fractures that facilitated the ascent of viscous silicic melts through the lunar crust. Contemporaneous existence of suitable protoliths and adequate crustal pathways for magma ascent may have controlled silicic volcanism on the Moon, and can explain the sporadic occurrence and overlapping ages of the lunar silicic constructs.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.