{"title":"智利沿海浮游植物生产的气候驱动因素","authors":"Felipe Tornquist, Grant R. Bigg, Robert G. Bryant","doi":"10.1016/j.jmarsys.2024.104013","DOIUrl":null,"url":null,"abstract":"<div><p>The west coast of South America is known for its high primary productivity. The level of phytoplankton can be measured through satellite images that detect chlorophyll (Chl), which is dependent on several oceanographic and meteorological parameters. Climate drivers such as El Niño Southern Oscillation (ENSO) and the Southeast Pacific Subtropical Anticyclone (SPSA) affect these parameters and, consequently, the phytoplankton. The objective of this study was to identify the impact of ENSO on SPSA, climate variables, and phytoplankton patterns. Composites were created using the years selected with either strongly positive or negative ENSO to understand their influence on different parameters. To create the Chl composite, it was necessary to extend it using Canonical Correlation Analysis (CCA) based on the sea surface temperature (SST) pattern. The study concludes that ENSO has a noticeable impact on Chl, mainly in the Southern Zone during the warm season. This is driven by the expansion of SPSA to the South, which increases the sea level pressure (SLP) in that region. However, predicting the Chl concentration has a high degree of uncertainty due to its complexity.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"246 ","pages":"Article 104013"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924796324000514/pdfft?md5=f921de2c2ad1002ce1fe9bbe33de8092&pid=1-s2.0-S0924796324000514-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Climate drivers of phytoplankton production along the Chilean coast\",\"authors\":\"Felipe Tornquist, Grant R. Bigg, Robert G. Bryant\",\"doi\":\"10.1016/j.jmarsys.2024.104013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The west coast of South America is known for its high primary productivity. The level of phytoplankton can be measured through satellite images that detect chlorophyll (Chl), which is dependent on several oceanographic and meteorological parameters. Climate drivers such as El Niño Southern Oscillation (ENSO) and the Southeast Pacific Subtropical Anticyclone (SPSA) affect these parameters and, consequently, the phytoplankton. The objective of this study was to identify the impact of ENSO on SPSA, climate variables, and phytoplankton patterns. Composites were created using the years selected with either strongly positive or negative ENSO to understand their influence on different parameters. To create the Chl composite, it was necessary to extend it using Canonical Correlation Analysis (CCA) based on the sea surface temperature (SST) pattern. The study concludes that ENSO has a noticeable impact on Chl, mainly in the Southern Zone during the warm season. This is driven by the expansion of SPSA to the South, which increases the sea level pressure (SLP) in that region. However, predicting the Chl concentration has a high degree of uncertainty due to its complexity.</p></div>\",\"PeriodicalId\":50150,\"journal\":{\"name\":\"Journal of Marine Systems\",\"volume\":\"246 \",\"pages\":\"Article 104013\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924796324000514/pdfft?md5=f921de2c2ad1002ce1fe9bbe33de8092&pid=1-s2.0-S0924796324000514-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924796324000514\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924796324000514","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Climate drivers of phytoplankton production along the Chilean coast
The west coast of South America is known for its high primary productivity. The level of phytoplankton can be measured through satellite images that detect chlorophyll (Chl), which is dependent on several oceanographic and meteorological parameters. Climate drivers such as El Niño Southern Oscillation (ENSO) and the Southeast Pacific Subtropical Anticyclone (SPSA) affect these parameters and, consequently, the phytoplankton. The objective of this study was to identify the impact of ENSO on SPSA, climate variables, and phytoplankton patterns. Composites were created using the years selected with either strongly positive or negative ENSO to understand their influence on different parameters. To create the Chl composite, it was necessary to extend it using Canonical Correlation Analysis (CCA) based on the sea surface temperature (SST) pattern. The study concludes that ENSO has a noticeable impact on Chl, mainly in the Southern Zone during the warm season. This is driven by the expansion of SPSA to the South, which increases the sea level pressure (SLP) in that region. However, predicting the Chl concentration has a high degree of uncertainty due to its complexity.
期刊介绍:
The Journal of Marine Systems provides a medium for interdisciplinary exchange between physical, chemical and biological oceanographers and marine geologists. The journal welcomes original research papers and review articles. Preference will be given to interdisciplinary approaches to marine systems.