计算消失的矩阵向量积

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Cornelius Brand , Viktoriia Korchemna , Kirill Simonov , Michael Skotnica
{"title":"计算消失的矩阵向量积","authors":"Cornelius Brand ,&nbsp;Viktoriia Korchemna ,&nbsp;Kirill Simonov ,&nbsp;Michael Skotnica","doi":"10.1016/j.tcs.2024.114877","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces. Let <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> be a rational vector, <span><math><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> a list of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> rational matrices, <span><math><mi>S</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi><mo>×</mo><mi>d</mi></mrow></msup></math></span> a rational matrix not necessarily square and <em>k</em> a parameter. The goal is to compute the number of ways one can choose <em>k</em> matrices <span><math><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span> from the list such that <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>⋯</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mi>v</mi><mo>=</mo><mn>0</mn><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span>.</p><p>In this paper, we show that this problem is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. As a consequence, computing the <em>k</em>-th homotopy group of a <em>d</em>-dimensional 1-connected topological space for <span><math><mi>d</mi><mo>&gt;</mo><mn>3</mn></math></span> is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. We also discuss a decision version of the problem and its several modifications for which we show <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>/</mo><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hardness. This is in contrast to the parameterized <em>k</em>-sum problem, which is only <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo></math></span>-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1021 ","pages":"Article 114877"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004948/pdfft?md5=2c53a58210c875914cfbec0e130e8130&pid=1-s2.0-S0304397524004948-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Counting vanishing matrix-vector products\",\"authors\":\"Cornelius Brand ,&nbsp;Viktoriia Korchemna ,&nbsp;Kirill Simonov ,&nbsp;Michael Skotnica\",\"doi\":\"10.1016/j.tcs.2024.114877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces. Let <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> be a rational vector, <span><math><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> a list of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> rational matrices, <span><math><mi>S</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi><mo>×</mo><mi>d</mi></mrow></msup></math></span> a rational matrix not necessarily square and <em>k</em> a parameter. The goal is to compute the number of ways one can choose <em>k</em> matrices <span><math><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span> from the list such that <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>⋯</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mi>v</mi><mo>=</mo><mn>0</mn><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span>.</p><p>In this paper, we show that this problem is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. As a consequence, computing the <em>k</em>-th homotopy group of a <em>d</em>-dimensional 1-connected topological space for <span><math><mi>d</mi><mo>&gt;</mo><mn>3</mn></math></span> is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. We also discuss a decision version of the problem and its several modifications for which we show <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>/</mo><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hardness. This is in contrast to the parameterized <em>k</em>-sum problem, which is only <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo></math></span>-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.</p></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1021 \",\"pages\":\"Article 114877\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004948/pdfft?md5=2c53a58210c875914cfbec0e130e8130&pid=1-s2.0-S0304397524004948-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524004948\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

考虑下面这个经典子集和问题的参数化计数变化,它主要出现在拓扑空间的高同调群中。设 v∈Qd 是一个有理向量,(T1,T2...,Tm) 是一个 d×d 有理矩阵列表,S∈Qh×d 是一个不一定是正方形的有理矩阵,k 是一个参数。我们的目标是从列表中选择 k 个矩阵 Ti1,Ti2,...,Tik,使得 STik⋯Ti1v=0∈Qh 的方法数。因此,计算 d>3 的 d 维 1-connected 拓扑空间的 k-th 同调群对于参数 k 是 #W[2]-困难的。我们还讨论了该问题的决策版本及其若干修改,并证明了其 W[1]/W[2]-hardness 性。这与参数化 k 和问题形成鲜明对比,后者只有 W[1]-hardness (Abboud-Lewi-Williams, ESA'14)。此外,我们还证明了该问题的无参数决策版本是一个无法判定的问题,并给出了一种针对有限域上有界矩阵的固定参数可控算法,该算法以矩阵维数和域的阶数为参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting vanishing matrix-vector products

Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces. Let vQd be a rational vector, (T1,T2,Tm) a list of d×d rational matrices, SQh×d a rational matrix not necessarily square and k a parameter. The goal is to compute the number of ways one can choose k matrices Ti1,Ti2,,Tik from the list such that STikTi1v=0Qh.

In this paper, we show that this problem is #W[2]-hard for parameter k. As a consequence, computing the k-th homotopy group of a d-dimensional 1-connected topological space for d>3 is #W[2]-hard for parameter k. We also discuss a decision version of the problem and its several modifications for which we show W[1]/W[2]-hardness. This is in contrast to the parameterized k-sum problem, which is only W[1]-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信