BRAVE:一种具有样本关注度的级联生成模型,用于对少量图像进行稳健分类

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"BRAVE:一种具有样本关注度的级联生成模型,用于对少量图像进行稳健分类","authors":"","doi":"10.1016/j.neucom.2024.128585","DOIUrl":null,"url":null,"abstract":"<div><p>Few-shot learning (FSL) confronts notable challenges due to the disparity between training and testing categories, leading to channel bias in neural networks and hindering accurate feature discernment. To address this, we introduce Biased-Reduction Attentive Network (BRAVE), an innovative model that incorporates a refined Vector Quantized Variational Autoencoder (VQ-VAE) backbone, enhanced with our Diverse Quantization (DQ) Module, for unbiased, fine-grained feature creation. Alongside, our Sample Attention (SA) Module is utilized for extracting discriminative features from these unbiased, fine-grained features. The DQ Module in BRAVE strategically integrates prior distribution regularization and stochastic masking with Gumbel sampling for balanced and diverse codebook engagement, while the SA Module leverages inter-sample dynamics for identifying critical features. This synergy effectively counters channel bias and boosts classification accuracy in FSL setups, surpassing current leading methods. Our approach represents a practical balance between preserving detailed features through the decoder and ensuring classification effectiveness, marking a significant advance in FSL. BRAVE’s implementation is accessible for community use and further exploration. Code and models available at <span><span>https://github.com/ApocalypsezZ/BRAVE</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BRAVE: A cascaded generative model with sample attention for robust few shot image classification\",\"authors\":\"\",\"doi\":\"10.1016/j.neucom.2024.128585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-shot learning (FSL) confronts notable challenges due to the disparity between training and testing categories, leading to channel bias in neural networks and hindering accurate feature discernment. To address this, we introduce Biased-Reduction Attentive Network (BRAVE), an innovative model that incorporates a refined Vector Quantized Variational Autoencoder (VQ-VAE) backbone, enhanced with our Diverse Quantization (DQ) Module, for unbiased, fine-grained feature creation. Alongside, our Sample Attention (SA) Module is utilized for extracting discriminative features from these unbiased, fine-grained features. The DQ Module in BRAVE strategically integrates prior distribution regularization and stochastic masking with Gumbel sampling for balanced and diverse codebook engagement, while the SA Module leverages inter-sample dynamics for identifying critical features. This synergy effectively counters channel bias and boosts classification accuracy in FSL setups, surpassing current leading methods. Our approach represents a practical balance between preserving detailed features through the decoder and ensuring classification effectiveness, marking a significant advance in FSL. BRAVE’s implementation is accessible for community use and further exploration. Code and models available at <span><span>https://github.com/ApocalypsezZ/BRAVE</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224013560\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224013560","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于训练和测试类别之间的差异,少量学习(FSL)面临着显著的挑战,导致神经网络中的通道偏差,阻碍了准确的特征识别。为了解决这个问题,我们引入了有偏差还原注意力网络(BRAVE),这是一种创新模型,它采用了经过改进的矢量量化变异自动编码器(VQ-VAE)骨干,并通过我们的多样化量化(DQ)模块进行了增强,以实现无偏差的细粒度特征创建。同时,我们的样本关注(SA)模块可用于从这些无偏的细粒度特征中提取判别特征。BRAVE 中的 DQ 模块战略性地将先验分布正则化和随机掩蔽与 Gumbel 采样相结合,以实现均衡和多样化的编码本参与,而 SA 模块则利用样本间动态来识别关键特征。这种协同作用有效地消除了信道偏差,提高了 FSL 设置中的分类准确性,超越了当前的领先方法。我们的方法在通过解码器保留详细特征和确保分类效果之间实现了切实可行的平衡,标志着 FSL 领域的重大进步。BRAVE 的实现可供社区使用和进一步探索。代码和模型请访问 https://github.com/ApocalypsezZ/BRAVE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BRAVE: A cascaded generative model with sample attention for robust few shot image classification

Few-shot learning (FSL) confronts notable challenges due to the disparity between training and testing categories, leading to channel bias in neural networks and hindering accurate feature discernment. To address this, we introduce Biased-Reduction Attentive Network (BRAVE), an innovative model that incorporates a refined Vector Quantized Variational Autoencoder (VQ-VAE) backbone, enhanced with our Diverse Quantization (DQ) Module, for unbiased, fine-grained feature creation. Alongside, our Sample Attention (SA) Module is utilized for extracting discriminative features from these unbiased, fine-grained features. The DQ Module in BRAVE strategically integrates prior distribution regularization and stochastic masking with Gumbel sampling for balanced and diverse codebook engagement, while the SA Module leverages inter-sample dynamics for identifying critical features. This synergy effectively counters channel bias and boosts classification accuracy in FSL setups, surpassing current leading methods. Our approach represents a practical balance between preserving detailed features through the decoder and ensuring classification effectiveness, marking a significant advance in FSL. BRAVE’s implementation is accessible for community use and further exploration. Code and models available at https://github.com/ApocalypsezZ/BRAVE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信