{"title":"利用自然语言处理将维护行动分解为子任务:意大利一家汽车公司的案例研究","authors":"Vito Giordano , Gualtiero Fantoni","doi":"10.1016/j.compind.2024.104186","DOIUrl":null,"url":null,"abstract":"<div><p>Industry 4.0 has led to a huge increase in data coming from machine maintenance. At the same time, advances in Natural Language Processing (NLP) and Large Language Models provide new ways to analyse this data. In our research, we use NLP to analyse maintenance work orders, and specifically the descriptions of failures and the corresponding repair actions. Many NLP studies have focused on failure descriptions for categorising them, extracting specific information about failure, or supporting failure analysis methodologies (such as FMEA). Whereas, the analysis of repair actions and its relationship with failure remains underexplored. Addressing this gap, our study makes three significant contributions. Firstly, we focused on the Italian language, which presents additional challenges due to the dominance of NLP systems that are mainly designed for English. Secondly, it proposes a method for automatically subdividing a repair action into a set of sub-tasks. Lastly, it introduces an approach that employs association rule mining to recommend sub-tasks to maintainers when addressing failures. We tested our approach with a case study from an automotive company in Italy. The case study provides insights into the current barriers faced by NLP applications in maintenance, offering a glimpse into the future opportunities for smart maintenance systems.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104186"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361524001143/pdfft?md5=60b4c04fc51db998076996dc8ccd709b&pid=1-s2.0-S0166361524001143-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Decomposing maintenance actions into sub-tasks using natural language processing: A case study in an Italian automotive company\",\"authors\":\"Vito Giordano , Gualtiero Fantoni\",\"doi\":\"10.1016/j.compind.2024.104186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Industry 4.0 has led to a huge increase in data coming from machine maintenance. At the same time, advances in Natural Language Processing (NLP) and Large Language Models provide new ways to analyse this data. In our research, we use NLP to analyse maintenance work orders, and specifically the descriptions of failures and the corresponding repair actions. Many NLP studies have focused on failure descriptions for categorising them, extracting specific information about failure, or supporting failure analysis methodologies (such as FMEA). Whereas, the analysis of repair actions and its relationship with failure remains underexplored. Addressing this gap, our study makes three significant contributions. Firstly, we focused on the Italian language, which presents additional challenges due to the dominance of NLP systems that are mainly designed for English. Secondly, it proposes a method for automatically subdividing a repair action into a set of sub-tasks. Lastly, it introduces an approach that employs association rule mining to recommend sub-tasks to maintainers when addressing failures. We tested our approach with a case study from an automotive company in Italy. The case study provides insights into the current barriers faced by NLP applications in maintenance, offering a glimpse into the future opportunities for smart maintenance systems.</p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"164 \",\"pages\":\"Article 104186\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166361524001143/pdfft?md5=60b4c04fc51db998076996dc8ccd709b&pid=1-s2.0-S0166361524001143-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361524001143\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001143","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Decomposing maintenance actions into sub-tasks using natural language processing: A case study in an Italian automotive company
Industry 4.0 has led to a huge increase in data coming from machine maintenance. At the same time, advances in Natural Language Processing (NLP) and Large Language Models provide new ways to analyse this data. In our research, we use NLP to analyse maintenance work orders, and specifically the descriptions of failures and the corresponding repair actions. Many NLP studies have focused on failure descriptions for categorising them, extracting specific information about failure, or supporting failure analysis methodologies (such as FMEA). Whereas, the analysis of repair actions and its relationship with failure remains underexplored. Addressing this gap, our study makes three significant contributions. Firstly, we focused on the Italian language, which presents additional challenges due to the dominance of NLP systems that are mainly designed for English. Secondly, it proposes a method for automatically subdividing a repair action into a set of sub-tasks. Lastly, it introduces an approach that employs association rule mining to recommend sub-tasks to maintainers when addressing failures. We tested our approach with a case study from an automotive company in Italy. The case study provides insights into the current barriers faced by NLP applications in maintenance, offering a glimpse into the future opportunities for smart maintenance systems.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.