Jie Liao , Lianqing Zhu , Lidan Lu , Li Yang , Guang Chen , Yingjie Xu , Bofei Zhu , Mingli Dong
{"title":"使用马赫-泽恩德干涉仪测量硅-绝缘体波导的有效折射率","authors":"Jie Liao , Lianqing Zhu , Lidan Lu , Li Yang , Guang Chen , Yingjie Xu , Bofei Zhu , Mingli Dong","doi":"10.1016/j.sna.2024.115906","DOIUrl":null,"url":null,"abstract":"<div><p>We propose and demonstrate an accurate method of measuring the effective refractive index of silicon-on-insulator waveguides. By conducting the combined analysis to the troughs’ wavelength in spectra of Mach–Zehnder interferometers on chip. The wavelength-dependent and temperature-dependent effective refractive index of the fabricated waveguides are measured experimentally, and obtained the thermo-optic coefficient of silicon-on-insulator waveguides is about 2×10<sup>−4</sup> /℃ in the 1550 nm communication band. The maximum measurement error for effective and group refractive index respectively are 1.5×10<sup>−5</sup> and 1.5×10<sup>−3</sup> obtained by numerical simulation. And an improved method for taking value of the free spectral range was discussed to obtain a more accurate group refractive index. It proves a fast and lost-cost measurement way to evaluate key optical parameters of waveguide, which can indicate the quality of fabrication process and optimize photonic components.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of the effective refractive index of silicon-on-insulator waveguide using Mach–Zehnder interferometers\",\"authors\":\"Jie Liao , Lianqing Zhu , Lidan Lu , Li Yang , Guang Chen , Yingjie Xu , Bofei Zhu , Mingli Dong\",\"doi\":\"10.1016/j.sna.2024.115906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose and demonstrate an accurate method of measuring the effective refractive index of silicon-on-insulator waveguides. By conducting the combined analysis to the troughs’ wavelength in spectra of Mach–Zehnder interferometers on chip. The wavelength-dependent and temperature-dependent effective refractive index of the fabricated waveguides are measured experimentally, and obtained the thermo-optic coefficient of silicon-on-insulator waveguides is about 2×10<sup>−4</sup> /℃ in the 1550 nm communication band. The maximum measurement error for effective and group refractive index respectively are 1.5×10<sup>−5</sup> and 1.5×10<sup>−3</sup> obtained by numerical simulation. And an improved method for taking value of the free spectral range was discussed to obtain a more accurate group refractive index. It proves a fast and lost-cost measurement way to evaluate key optical parameters of waveguide, which can indicate the quality of fabrication process and optimize photonic components.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009002\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Measurement of the effective refractive index of silicon-on-insulator waveguide using Mach–Zehnder interferometers
We propose and demonstrate an accurate method of measuring the effective refractive index of silicon-on-insulator waveguides. By conducting the combined analysis to the troughs’ wavelength in spectra of Mach–Zehnder interferometers on chip. The wavelength-dependent and temperature-dependent effective refractive index of the fabricated waveguides are measured experimentally, and obtained the thermo-optic coefficient of silicon-on-insulator waveguides is about 2×10−4 /℃ in the 1550 nm communication band. The maximum measurement error for effective and group refractive index respectively are 1.5×10−5 and 1.5×10−3 obtained by numerical simulation. And an improved method for taking value of the free spectral range was discussed to obtain a more accurate group refractive index. It proves a fast and lost-cost measurement way to evaluate key optical parameters of waveguide, which can indicate the quality of fabrication process and optimize photonic components.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.