{"title":"单颗粒低温电子显微镜图和模型验证:并非清澈见底","authors":"Gabriel C. Lander","doi":"10.1016/j.sbi.2024.102918","DOIUrl":null,"url":null,"abstract":"<div><p>The application of single particle cryogenic electron microscopy (cryo-EM) to structure determination continues to have a transformative impact on our understanding on biological systems. While there has been a great deal of algorithmic development focused on improving attainable resolutions and streamlining atomic model building, there has not been commensurate development of validation metrics to ensure the accuracy of our cryo-EM maps and models. This review emphasizes the persistent issues that currently complicate single particle cryo-EM structure validation, and highlights the metrics that are gaining broad acceptance by the community. This article aims to underscore the need for further development of validation criteria and the potential role of machine learning methodologies in confidently assessing the quality of cryo-EM structures.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"89 ","pages":"Article 102918"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24001453/pdfft?md5=64a9e97a3f51624e35ee3fce42620875&pid=1-s2.0-S0959440X24001453-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Single particle cryo-EM map and model validation: It's not crystal clear\",\"authors\":\"Gabriel C. Lander\",\"doi\":\"10.1016/j.sbi.2024.102918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of single particle cryogenic electron microscopy (cryo-EM) to structure determination continues to have a transformative impact on our understanding on biological systems. While there has been a great deal of algorithmic development focused on improving attainable resolutions and streamlining atomic model building, there has not been commensurate development of validation metrics to ensure the accuracy of our cryo-EM maps and models. This review emphasizes the persistent issues that currently complicate single particle cryo-EM structure validation, and highlights the metrics that are gaining broad acceptance by the community. This article aims to underscore the need for further development of validation criteria and the potential role of machine learning methodologies in confidently assessing the quality of cryo-EM structures.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"89 \",\"pages\":\"Article 102918\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001453/pdfft?md5=64a9e97a3f51624e35ee3fce42620875&pid=1-s2.0-S0959440X24001453-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24001453\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001453","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single particle cryo-EM map and model validation: It's not crystal clear
The application of single particle cryogenic electron microscopy (cryo-EM) to structure determination continues to have a transformative impact on our understanding on biological systems. While there has been a great deal of algorithmic development focused on improving attainable resolutions and streamlining atomic model building, there has not been commensurate development of validation metrics to ensure the accuracy of our cryo-EM maps and models. This review emphasizes the persistent issues that currently complicate single particle cryo-EM structure validation, and highlights the metrics that are gaining broad acceptance by the community. This article aims to underscore the need for further development of validation criteria and the potential role of machine learning methodologies in confidently assessing the quality of cryo-EM structures.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation