{"title":"Diff-STAR:通过基于扩散的生成探索师生自适应重建,以实现图像协调","authors":"An Cao , Gang Shen","doi":"10.1016/j.imavis.2024.105254","DOIUrl":null,"url":null,"abstract":"<div><p>Image harmonization aims to seamlessly integrate foreground and background elements from distinct photos into a visually realistic composite. However, achieving high-quality image composition remains challenging in adjusting color balance, retaining fine details, and ensuring perceptual consistency. This article introduces a novel approach named Diffusion-based Student-Teacher Adaptive Reconstruction (Diff-STAR) to address foreground adjustment by framing it as an image reconstruction task. Leveraging natural photographs for model pretraining eliminates the need for data augmentation within Diff-STAR's framework. Employing the pre-trained Denoising Diffusion Implicit Model (DDIM) enhances photorealism and fidelity in generating high-quality outputs from reconstructed latent representations. By effectively identifying similarities in low-frequency style and semantic relationships across various regions within latent images, we develop a student-teacher architecture combining Transformer encoders and decoders to predict adaptively masked patches derived through diffusion processes. Evaluated on the public datasets, including iHarmony4 and RealHM, the experiment results confirm Diff-STAR's superiority over other state-of-the-art approaches based on metrics including Mean Squared Error (MSE) and Peak Signal-to-noise ratio (PSNR).</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105254"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diff-STAR: Exploring student-teacher adaptive reconstruction through diffusion-based generation for image harmonization\",\"authors\":\"An Cao , Gang Shen\",\"doi\":\"10.1016/j.imavis.2024.105254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image harmonization aims to seamlessly integrate foreground and background elements from distinct photos into a visually realistic composite. However, achieving high-quality image composition remains challenging in adjusting color balance, retaining fine details, and ensuring perceptual consistency. This article introduces a novel approach named Diffusion-based Student-Teacher Adaptive Reconstruction (Diff-STAR) to address foreground adjustment by framing it as an image reconstruction task. Leveraging natural photographs for model pretraining eliminates the need for data augmentation within Diff-STAR's framework. Employing the pre-trained Denoising Diffusion Implicit Model (DDIM) enhances photorealism and fidelity in generating high-quality outputs from reconstructed latent representations. By effectively identifying similarities in low-frequency style and semantic relationships across various regions within latent images, we develop a student-teacher architecture combining Transformer encoders and decoders to predict adaptively masked patches derived through diffusion processes. Evaluated on the public datasets, including iHarmony4 and RealHM, the experiment results confirm Diff-STAR's superiority over other state-of-the-art approaches based on metrics including Mean Squared Error (MSE) and Peak Signal-to-noise ratio (PSNR).</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"151 \",\"pages\":\"Article 105254\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003597\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003597","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Diff-STAR: Exploring student-teacher adaptive reconstruction through diffusion-based generation for image harmonization
Image harmonization aims to seamlessly integrate foreground and background elements from distinct photos into a visually realistic composite. However, achieving high-quality image composition remains challenging in adjusting color balance, retaining fine details, and ensuring perceptual consistency. This article introduces a novel approach named Diffusion-based Student-Teacher Adaptive Reconstruction (Diff-STAR) to address foreground adjustment by framing it as an image reconstruction task. Leveraging natural photographs for model pretraining eliminates the need for data augmentation within Diff-STAR's framework. Employing the pre-trained Denoising Diffusion Implicit Model (DDIM) enhances photorealism and fidelity in generating high-quality outputs from reconstructed latent representations. By effectively identifying similarities in low-frequency style and semantic relationships across various regions within latent images, we develop a student-teacher architecture combining Transformer encoders and decoders to predict adaptively masked patches derived through diffusion processes. Evaluated on the public datasets, including iHarmony4 and RealHM, the experiment results confirm Diff-STAR's superiority over other state-of-the-art approaches based on metrics including Mean Squared Error (MSE) and Peak Signal-to-noise ratio (PSNR).
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.