用于具有泄漏延迟和不同时间尺度的高木-菅野模糊竞争神经网络同步的间歇动态事件触发控制

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Hao Qiu , Huamin Wang , Fan Li , Shiping Wen
{"title":"用于具有泄漏延迟和不同时间尺度的高木-菅野模糊竞争神经网络同步的间歇动态事件触发控制","authors":"Hao Qiu ,&nbsp;Huamin Wang ,&nbsp;Fan Li ,&nbsp;Shiping Wen","doi":"10.1016/j.fss.2024.109130","DOIUrl":null,"url":null,"abstract":"<div><p>Because competitive neural networks (CNNs) can simulate the phenomena of lateral inhibition among neurons, their dynamics are attracting increasing attention, which motives us to investigate the global exponential synchronization issue of multiple time-delays fuzzy CNNs (MDFCNNs) with different time scales in this article. Firstly, to solve the significant resource wastage problem caused by the time-triggered mechanism previously adopted in CNNs, a novel intermittent dynamic event-triggered mechanism is proposed. It is worth mentioning that the fuzzy logic systems are also utilized in this model and controller, effectively handling the uncertainties and nonlinearities in practical problems. Secondly, by designing the intermittent static/dynamic event-triggered mechanism, we derive the global exponential synchronization conditions for MDFCNNs with different time scales under a simpler and more implementable controller composed of a linear negative feedback control term. We also utilize the reduction to absurdity to demonstrate the nonexistence of Zeno behavior for the error system of master-slave CNNs. Furthermore, we provide several corollaries to further indicate the generality of the model and the cost savings of the control mechanism. Finally, we provide an example and some comparisons to demonstrate the efficiency of the derived theoretical findings.</p></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent dynamic event-triggered control for synchronization of Takagi–Sugeno fuzzy competitive neural networks with leakage delay and different time scales\",\"authors\":\"Hao Qiu ,&nbsp;Huamin Wang ,&nbsp;Fan Li ,&nbsp;Shiping Wen\",\"doi\":\"10.1016/j.fss.2024.109130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Because competitive neural networks (CNNs) can simulate the phenomena of lateral inhibition among neurons, their dynamics are attracting increasing attention, which motives us to investigate the global exponential synchronization issue of multiple time-delays fuzzy CNNs (MDFCNNs) with different time scales in this article. Firstly, to solve the significant resource wastage problem caused by the time-triggered mechanism previously adopted in CNNs, a novel intermittent dynamic event-triggered mechanism is proposed. It is worth mentioning that the fuzzy logic systems are also utilized in this model and controller, effectively handling the uncertainties and nonlinearities in practical problems. Secondly, by designing the intermittent static/dynamic event-triggered mechanism, we derive the global exponential synchronization conditions for MDFCNNs with different time scales under a simpler and more implementable controller composed of a linear negative feedback control term. We also utilize the reduction to absurdity to demonstrate the nonexistence of Zeno behavior for the error system of master-slave CNNs. Furthermore, we provide several corollaries to further indicate the generality of the model and the cost savings of the control mechanism. Finally, we provide an example and some comparisons to demonstrate the efficiency of the derived theoretical findings.</p></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011424002768\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011424002768","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于竞争性神经网络(CNN)可以模拟神经元之间的横向抑制现象,其动态性越来越受到关注,这促使我们在本文中研究不同时间尺度的多时延模糊 CNN(MDFCN)的全局指数同步问题。首先,为了解决以往 CNN 采用的时间触发机制造成的严重资源浪费问题,我们提出了一种新型的间歇动态事件触发机制。值得一提的是,该模型和控制器还采用了模糊逻辑系统,有效地处理了实际问题中的不确定性和非线性问题。其次,通过设计间歇性静态/动态事件触发机制,我们推导出了在由线性负反馈控制项组成的更简单、更易于实现的控制器下,不同时间尺度的 MDFCNN 的全局指数同步条件。我们还利用荒诞性还原法证明了主从 CNN 误差系统不存在芝诺行为。此外,我们还提供了几个推论,进一步说明了模型的通用性和控制机制的成本节约。最后,我们提供了一个示例和一些比较,以证明推导出的理论结论的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intermittent dynamic event-triggered control for synchronization of Takagi–Sugeno fuzzy competitive neural networks with leakage delay and different time scales

Because competitive neural networks (CNNs) can simulate the phenomena of lateral inhibition among neurons, their dynamics are attracting increasing attention, which motives us to investigate the global exponential synchronization issue of multiple time-delays fuzzy CNNs (MDFCNNs) with different time scales in this article. Firstly, to solve the significant resource wastage problem caused by the time-triggered mechanism previously adopted in CNNs, a novel intermittent dynamic event-triggered mechanism is proposed. It is worth mentioning that the fuzzy logic systems are also utilized in this model and controller, effectively handling the uncertainties and nonlinearities in practical problems. Secondly, by designing the intermittent static/dynamic event-triggered mechanism, we derive the global exponential synchronization conditions for MDFCNNs with different time scales under a simpler and more implementable controller composed of a linear negative feedback control term. We also utilize the reduction to absurdity to demonstrate the nonexistence of Zeno behavior for the error system of master-slave CNNs. Furthermore, we provide several corollaries to further indicate the generality of the model and the cost savings of the control mechanism. Finally, we provide an example and some comparisons to demonstrate the efficiency of the derived theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信