B2DFL:为区块链辅助的分散式联合学习带来蝴蝶效应

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Hao Wang , Yichen Cai , Yu Tao , Luyao Wang , Yanbin Li , Lu Zhou
{"title":"B2DFL:为区块链辅助的分散式联合学习带来蝴蝶效应","authors":"Hao Wang ,&nbsp;Yichen Cai ,&nbsp;Yu Tao ,&nbsp;Luyao Wang ,&nbsp;Yanbin Li ,&nbsp;Lu Zhou","doi":"10.1016/j.jpdc.2024.104978","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel decentralized federated learning framework called B2DFL. It decomposes the aggregation process of vanilla FL into layered and serialized sub-aggregation processes and offloads the communication and computation from a single point to distributed nodes, thus addressing the single point of failure issue in centralized FL. The decentralization of B2DFL is based on the Butterfly, a distributed network topology, to organize and orchestrate the order and rules of node aggregation. Additionally, to mitigate potential risks such as dropouts or tampering, we leverage the blockchain and IPFS systems. Specifically, after each node completes its computation (including training and aggregation), it generates a hash value of the results as proof. We maintain a Tamper-evident Data Structure (TDS) on the blockchain, which records these proofs to ensure tamper-proofing and fast verification. To reduce the storage burden on the blockchain and improve throughput, we store the aggregated results on IPFS, a system that enables quick data location through hash values of data, for data backup. We also design a node replacement mechanism for quick dropout handling. We conduct a comprehensive performance evaluation and experimental results demonstrate that B2DFL presents a significant performance improvement while achieving privacy and decentralization.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B2DFL: Bringing butterfly to decentralized federated learning assisted with blockchain\",\"authors\":\"Hao Wang ,&nbsp;Yichen Cai ,&nbsp;Yu Tao ,&nbsp;Luyao Wang ,&nbsp;Yanbin Li ,&nbsp;Lu Zhou\",\"doi\":\"10.1016/j.jpdc.2024.104978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel decentralized federated learning framework called B2DFL. It decomposes the aggregation process of vanilla FL into layered and serialized sub-aggregation processes and offloads the communication and computation from a single point to distributed nodes, thus addressing the single point of failure issue in centralized FL. The decentralization of B2DFL is based on the Butterfly, a distributed network topology, to organize and orchestrate the order and rules of node aggregation. Additionally, to mitigate potential risks such as dropouts or tampering, we leverage the blockchain and IPFS systems. Specifically, after each node completes its computation (including training and aggregation), it generates a hash value of the results as proof. We maintain a Tamper-evident Data Structure (TDS) on the blockchain, which records these proofs to ensure tamper-proofing and fast verification. To reduce the storage burden on the blockchain and improve throughput, we store the aggregated results on IPFS, a system that enables quick data location through hash values of data, for data backup. We also design a node replacement mechanism for quick dropout handling. We conduct a comprehensive performance evaluation and experimental results demonstrate that B2DFL presents a significant performance improvement while achieving privacy and decentralization.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524001424\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524001424","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种名为 B2DFL 的新型分散式联合学习框架。它将虚幻 FL 的聚合过程分解为分层和序列化的子聚合过程,并将通信和计算从单点卸载到分布式节点,从而解决了集中式 FL 中的单点故障问题。B2DFL 的去中心化基于分布式网络拓扑结构 Butterfly,以组织和协调节点聚合的顺序和规则。此外,为了降低掉线或篡改等潜在风险,我们还利用了区块链和 IPFS 系统。具体来说,每个节点完成计算(包括训练和聚合)后,都会生成结果的哈希值作为证明。我们在区块链上维护一个防篡改数据结构(TDS),记录这些证明,以确保防篡改和快速验证。为了减轻区块链的存储负担并提高吞吐量,我们将汇总结果存储在 IPFS 上,该系统可通过数据的哈希值快速定位数据,以便进行数据备份。我们还设计了一种节点替换机制,用于快速处理掉链问题。我们进行了全面的性能评估,实验结果表明,B2DFL 在实现隐私和去中心化的同时,还显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
B2DFL: Bringing butterfly to decentralized federated learning assisted with blockchain

We propose a novel decentralized federated learning framework called B2DFL. It decomposes the aggregation process of vanilla FL into layered and serialized sub-aggregation processes and offloads the communication and computation from a single point to distributed nodes, thus addressing the single point of failure issue in centralized FL. The decentralization of B2DFL is based on the Butterfly, a distributed network topology, to organize and orchestrate the order and rules of node aggregation. Additionally, to mitigate potential risks such as dropouts or tampering, we leverage the blockchain and IPFS systems. Specifically, after each node completes its computation (including training and aggregation), it generates a hash value of the results as proof. We maintain a Tamper-evident Data Structure (TDS) on the blockchain, which records these proofs to ensure tamper-proofing and fast verification. To reduce the storage burden on the blockchain and improve throughput, we store the aggregated results on IPFS, a system that enables quick data location through hash values of data, for data backup. We also design a node replacement mechanism for quick dropout handling. We conduct a comprehensive performance evaluation and experimental results demonstrate that B2DFL presents a significant performance improvement while achieving privacy and decentralization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信