为第二语言写作研究建立自定义 NLP 工具以标注话语功能特征:教程

Masaki Eguchi , Kristopher Kyle
{"title":"为第二语言写作研究建立自定义 NLP 工具以标注话语功能特征:教程","authors":"Masaki Eguchi ,&nbsp;Kristopher Kyle","doi":"10.1016/j.rmal.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><p>The current tutorial paper describes a process of developing a custom natural language processing model with a particular focus on a discourse annotation task. After an overview of recent developments in natural language processing (NLP), the paper discusses the development of the Engagement Analyzer (<span><span>Eguchi &amp; Kyle, 2023</span></span>), focusing on corpus annotation, the machine learning model, model training, evaluation, and dissemination. A step-by-step tutorial of this process via the spaCy Python package is provided. The paper highlights the feasibility of developing custom NLP tools to enhance the scalability and replicability of the annotation of context-sensitive linguistic features in L2 writing research.</p></div>","PeriodicalId":101075,"journal":{"name":"Research Methods in Applied Linguistics","volume":"3 3","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772766124000594/pdfft?md5=6448551cb4500b4275ce41c9341843c4&pid=1-s2.0-S2772766124000594-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Building custom NLP tools to annotate discourse-functional features for second language writing research: A tutorial\",\"authors\":\"Masaki Eguchi ,&nbsp;Kristopher Kyle\",\"doi\":\"10.1016/j.rmal.2024.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current tutorial paper describes a process of developing a custom natural language processing model with a particular focus on a discourse annotation task. After an overview of recent developments in natural language processing (NLP), the paper discusses the development of the Engagement Analyzer (<span><span>Eguchi &amp; Kyle, 2023</span></span>), focusing on corpus annotation, the machine learning model, model training, evaluation, and dissemination. A step-by-step tutorial of this process via the spaCy Python package is provided. The paper highlights the feasibility of developing custom NLP tools to enhance the scalability and replicability of the annotation of context-sensitive linguistic features in L2 writing research.</p></div>\",\"PeriodicalId\":101075,\"journal\":{\"name\":\"Research Methods in Applied Linguistics\",\"volume\":\"3 3\",\"pages\":\"Article 100153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772766124000594/pdfft?md5=6448551cb4500b4275ce41c9341843c4&pid=1-s2.0-S2772766124000594-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Methods in Applied Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772766124000594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods in Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772766124000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本教程论文介绍了开发定制自然语言处理模型的过程,尤其侧重于话语注释任务。在概述了自然语言处理(NLP)的最新发展之后,本文讨论了 Engagement Analyzer(Eguchi & Kyle, 2023)的开发过程,重点是语料标注、机器学习模型、模型训练、评估和传播。本文通过 spaCy Python 软件包提供了该过程的分步教程。本文强调了开发定制 NLP 工具的可行性,以提高 L2 写作研究中语境敏感语言特征标注的可扩展性和可复制性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building custom NLP tools to annotate discourse-functional features for second language writing research: A tutorial

The current tutorial paper describes a process of developing a custom natural language processing model with a particular focus on a discourse annotation task. After an overview of recent developments in natural language processing (NLP), the paper discusses the development of the Engagement Analyzer (Eguchi & Kyle, 2023), focusing on corpus annotation, the machine learning model, model training, evaluation, and dissemination. A step-by-step tutorial of this process via the spaCy Python package is provided. The paper highlights the feasibility of developing custom NLP tools to enhance the scalability and replicability of the annotation of context-sensitive linguistic features in L2 writing research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信