{"title":"面向物联网人工智能的高效联合学习解决方案","authors":"Mohamed Amine Kouda, Badis Djamaa, Ali Yachir","doi":"10.1016/j.future.2024.107533","DOIUrl":null,"url":null,"abstract":"<div><p>Federated Learning (FL) has gained popularity due to its advantages over centralized learning. However, existing FL research has primarily focused on unconstrained wired networks, neglecting the challenges posed by wireless Internet of Things (IoT) environments. The successful integration of FL into IoT networks requires tailored adaptations to address unique constraints, especially in computation and communication. This paper introduces Communication-Aware Federated Averaging (CAFA), a novel algorithm designed to enhance FL operations in wireless IoT networks with shared communication channels. CAFA primarily leverages the latent computational capacities during the communication phase for local training and aggregation. Through extensive and realistic evaluations in dedicated FL-IoT framework, our method demonstrates significant advantages over state-of-the-art approaches. Indeed, CAFA achieves up to a 4x reduction in communication costs and accelerates FL training by as much as 70%, while preserving model accuracy. These achievements position CAFA as a promising solution for the efficient implementation of FL in constrained wireless networks.</p></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"163 ","pages":"Article 107533"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient federated learning solution for the artificial intelligence of things\",\"authors\":\"Mohamed Amine Kouda, Badis Djamaa, Ali Yachir\",\"doi\":\"10.1016/j.future.2024.107533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated Learning (FL) has gained popularity due to its advantages over centralized learning. However, existing FL research has primarily focused on unconstrained wired networks, neglecting the challenges posed by wireless Internet of Things (IoT) environments. The successful integration of FL into IoT networks requires tailored adaptations to address unique constraints, especially in computation and communication. This paper introduces Communication-Aware Federated Averaging (CAFA), a novel algorithm designed to enhance FL operations in wireless IoT networks with shared communication channels. CAFA primarily leverages the latent computational capacities during the communication phase for local training and aggregation. Through extensive and realistic evaluations in dedicated FL-IoT framework, our method demonstrates significant advantages over state-of-the-art approaches. Indeed, CAFA achieves up to a 4x reduction in communication costs and accelerates FL training by as much as 70%, while preserving model accuracy. These achievements position CAFA as a promising solution for the efficient implementation of FL in constrained wireless networks.</p></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"163 \",\"pages\":\"Article 107533\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24004977\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24004977","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
An efficient federated learning solution for the artificial intelligence of things
Federated Learning (FL) has gained popularity due to its advantages over centralized learning. However, existing FL research has primarily focused on unconstrained wired networks, neglecting the challenges posed by wireless Internet of Things (IoT) environments. The successful integration of FL into IoT networks requires tailored adaptations to address unique constraints, especially in computation and communication. This paper introduces Communication-Aware Federated Averaging (CAFA), a novel algorithm designed to enhance FL operations in wireless IoT networks with shared communication channels. CAFA primarily leverages the latent computational capacities during the communication phase for local training and aggregation. Through extensive and realistic evaluations in dedicated FL-IoT framework, our method demonstrates significant advantages over state-of-the-art approaches. Indeed, CAFA achieves up to a 4x reduction in communication costs and accelerates FL training by as much as 70%, while preserving model accuracy. These achievements position CAFA as a promising solution for the efficient implementation of FL in constrained wireless networks.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.