建立具有复发性的环境源性瓜虫病动态模型:最优控制的应用

Q3 Mathematics
Habtamu Ayalew Engida
{"title":"建立具有复发性的环境源性瓜虫病动态模型:最优控制的应用","authors":"Habtamu Ayalew Engida","doi":"10.1016/j.rico.2024.100476","DOIUrl":null,"url":null,"abstract":"<div><p>Melioidosis is a significant health problem in tropical and subtropical regions, especially in Southeast Asia and Northern Australia. Recurrent melioidosis is a major obstacle to eliminating the disease from the community in these nations. This work aims to propose and analyze a human melioidosis model with recurrent phenomena and an optimal control model by incorporating time-dependent control functions. The basic reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the uncontrolled model is derived using the method of the next-generation matrix. Using the construction of a Lyapunov functional, we present the global asymptotic dynamics of the autonomous model in the presence of recurrent for both disease-free and endemic equilibria. The global asymptotic stability of the model’s equilibria shows the absence of a backward bifurcation for the model in both cases, whether in the absence or presence of relapse. The sensitivity analysis aims to identify the parameters that have the most significant impact on the model’s dynamics. Furthermore, qualitative analysis of the model’s global dynamics and the changing effect of the most influential parameters on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are supported by numerical experiments, with the results being illustrated graphically. The model with time-dependent controls is analyzed using optimal control theory to assess the impact of various intervention strategies on the spread of the epidemic. The numerical results of the optimality system are carried out using the Forward–Backward Sweep method in Matlab. We also conducted a cost-effectiveness analysis using two approaches: the average cost-effectiveness ratio and the incremental cost-effectiveness ratio.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"16 ","pages":"Article 100476"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724001061/pdfft?md5=3a1739690f36be9f1d8d661f3f1d8756&pid=1-s2.0-S2666720724001061-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling environmental-born melioidosis dynamics with recurrence: An application of optimal control\",\"authors\":\"Habtamu Ayalew Engida\",\"doi\":\"10.1016/j.rico.2024.100476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melioidosis is a significant health problem in tropical and subtropical regions, especially in Southeast Asia and Northern Australia. Recurrent melioidosis is a major obstacle to eliminating the disease from the community in these nations. This work aims to propose and analyze a human melioidosis model with recurrent phenomena and an optimal control model by incorporating time-dependent control functions. The basic reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the uncontrolled model is derived using the method of the next-generation matrix. Using the construction of a Lyapunov functional, we present the global asymptotic dynamics of the autonomous model in the presence of recurrent for both disease-free and endemic equilibria. The global asymptotic stability of the model’s equilibria shows the absence of a backward bifurcation for the model in both cases, whether in the absence or presence of relapse. The sensitivity analysis aims to identify the parameters that have the most significant impact on the model’s dynamics. Furthermore, qualitative analysis of the model’s global dynamics and the changing effect of the most influential parameters on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are supported by numerical experiments, with the results being illustrated graphically. The model with time-dependent controls is analyzed using optimal control theory to assess the impact of various intervention strategies on the spread of the epidemic. The numerical results of the optimality system are carried out using the Forward–Backward Sweep method in Matlab. We also conducted a cost-effectiveness analysis using two approaches: the average cost-effectiveness ratio and the incremental cost-effectiveness ratio.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"16 \",\"pages\":\"Article 100476\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001061/pdfft?md5=3a1739690f36be9f1d8d661f3f1d8756&pid=1-s2.0-S2666720724001061-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724001061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在热带和亚热带地区,尤其是东南亚和澳大利亚北部,瓜虫病是一个严重的健康问题。在这些国家,复发性类鼻疽是在社区消除该疾病的主要障碍。本研究旨在提出并分析一种具有复发性现象的人类类鼻疽模型,并通过纳入时间依赖性控制函数建立一种优化控制模型。利用下一代矩阵的方法推导出了非控制模型的基本繁殖数(R0)。通过构建 Lyapunov 函数,我们提出了无疾病和地方病平衡态下存在循环的自主模型的全局渐近动态。模型平衡态的全局渐近稳定性表明,无论是在无复发还是有复发的情况下,模型都不存在向后分叉。敏感性分析旨在确定对模型动态影响最大的参数。此外,还通过数值实验对模型的全局动态和对 R0 影响最大的参数的变化效果进行了定性分析,并用图形对结果进行了说明。利用最优控制理论分析了具有时间依赖性控制的模型,以评估各种干预策略对流行病传播的影响。优化系统的数值结果是使用 Matlab 中的前向-后向扫频方法得出的。我们还使用两种方法进行了成本效益分析:平均成本效益比和增量成本效益比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling environmental-born melioidosis dynamics with recurrence: An application of optimal control

Melioidosis is a significant health problem in tropical and subtropical regions, especially in Southeast Asia and Northern Australia. Recurrent melioidosis is a major obstacle to eliminating the disease from the community in these nations. This work aims to propose and analyze a human melioidosis model with recurrent phenomena and an optimal control model by incorporating time-dependent control functions. The basic reproduction number (R0) of the uncontrolled model is derived using the method of the next-generation matrix. Using the construction of a Lyapunov functional, we present the global asymptotic dynamics of the autonomous model in the presence of recurrent for both disease-free and endemic equilibria. The global asymptotic stability of the model’s equilibria shows the absence of a backward bifurcation for the model in both cases, whether in the absence or presence of relapse. The sensitivity analysis aims to identify the parameters that have the most significant impact on the model’s dynamics. Furthermore, qualitative analysis of the model’s global dynamics and the changing effect of the most influential parameters on R0 are supported by numerical experiments, with the results being illustrated graphically. The model with time-dependent controls is analyzed using optimal control theory to assess the impact of various intervention strategies on the spread of the epidemic. The numerical results of the optimality system are carried out using the Forward–Backward Sweep method in Matlab. We also conducted a cost-effectiveness analysis using two approaches: the average cost-effectiveness ratio and the incremental cost-effectiveness ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信