测量激光超声诱导的纳米级位移的干涉测量系统的临时校准

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Younggue Kim , Taeil Yoon , Byeongha Lee
{"title":"测量激光超声诱导的纳米级位移的干涉测量系统的临时校准","authors":"Younggue Kim ,&nbsp;Taeil Yoon ,&nbsp;Byeongha Lee","doi":"10.1016/j.optlastec.2024.111779","DOIUrl":null,"url":null,"abstract":"<div><p>Laser Ultrasound (LUS) is commonly used in many fields including thickness measurement and defect inspection. In a conventional LUS system, a piezo-based transducer (PZT) is generally used for detecting the ultrasound echo waves, which requires direct contact with a specimen and thus prolongs measurement time when any lateral scanning is necessary. We present a novel non-contact interferometric system based on a 3 × 3 optical fiber coupler. Even though the 3 × 3 interferometric system works stably at any operating point and allows quantitative measurements, it is generally known that careful calibration is necessary before main measurements. Experimentally, it was observed that the surface displacement, induced by the ultrasound wave of LUS, of a cornea phantom was so minute that averaging was necessary. In this study, we discovered that by using the multiple data sets acquired for averaging, we could obtain the system ad hoc characteristic ellipse without performing the conventional calibration process. Furthermore, by utilizing coherent average we could extract the displacement with a 0.14 nm sensitivity. We could also measure the thickness variation, induced by ocular pressure, of the cornea phantom with a resolution of 4.3 μm by measuring the time of a round trip of the ultrasound wave. This straightforward system, composed solely of a 3 × 3 coupler, is expected to promise a compact and efficient solution to diverse applications.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0030399224012374/pdfft?md5=6be5344b9da210d731cbb5ef22ba0bdc&pid=1-s2.0-S0030399224012374-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ad hoc calibration of interferometric system for measuring nanometer-scale displacements induced by laser ultrasound\",\"authors\":\"Younggue Kim ,&nbsp;Taeil Yoon ,&nbsp;Byeongha Lee\",\"doi\":\"10.1016/j.optlastec.2024.111779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser Ultrasound (LUS) is commonly used in many fields including thickness measurement and defect inspection. In a conventional LUS system, a piezo-based transducer (PZT) is generally used for detecting the ultrasound echo waves, which requires direct contact with a specimen and thus prolongs measurement time when any lateral scanning is necessary. We present a novel non-contact interferometric system based on a 3 × 3 optical fiber coupler. Even though the 3 × 3 interferometric system works stably at any operating point and allows quantitative measurements, it is generally known that careful calibration is necessary before main measurements. Experimentally, it was observed that the surface displacement, induced by the ultrasound wave of LUS, of a cornea phantom was so minute that averaging was necessary. In this study, we discovered that by using the multiple data sets acquired for averaging, we could obtain the system ad hoc characteristic ellipse without performing the conventional calibration process. Furthermore, by utilizing coherent average we could extract the displacement with a 0.14 nm sensitivity. We could also measure the thickness variation, induced by ocular pressure, of the cornea phantom with a resolution of 4.3 μm by measuring the time of a round trip of the ultrasound wave. This straightforward system, composed solely of a 3 × 3 coupler, is expected to promise a compact and efficient solution to diverse applications.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012374/pdfft?md5=6be5344b9da210d731cbb5ef22ba0bdc&pid=1-s2.0-S0030399224012374-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012374\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012374","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

激光超声(LUS)通常用于厚度测量和缺陷检测等多个领域。在传统的 LUS 系统中,通常使用压电式传感器(PZT)来检测超声回波,这需要直接接触试样,因此在需要进行横向扫描时会延长测量时间。我们提出了一种基于 3 × 3 光纤耦合器的新型非接触干涉测量系统。尽管 3 × 3 干涉测量系统可在任何工作点稳定工作,并可进行定量测量,但众所周知,在进行主要测量之前,必须进行仔细校准。实验发现,由 LUS 超声波引起的角膜模型表面位移非常微小,因此必须进行平均。在这项研究中,我们发现利用获取的多组数据进行平均,可以获得系统的临时特征椭圆,而无需执行传统的校准过程。此外,通过利用相干平均,我们还能以 0.14 nm 的灵敏度提取位移。我们还可以通过测量超声波的往返时间来测量眼压引起的角膜模型厚度变化,分辨率为 4.3 μm。这一简单的系统仅由一个 3 × 3 耦合器组成,有望为各种应用提供紧凑高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ad hoc calibration of interferometric system for measuring nanometer-scale displacements induced by laser ultrasound

Laser Ultrasound (LUS) is commonly used in many fields including thickness measurement and defect inspection. In a conventional LUS system, a piezo-based transducer (PZT) is generally used for detecting the ultrasound echo waves, which requires direct contact with a specimen and thus prolongs measurement time when any lateral scanning is necessary. We present a novel non-contact interferometric system based on a 3 × 3 optical fiber coupler. Even though the 3 × 3 interferometric system works stably at any operating point and allows quantitative measurements, it is generally known that careful calibration is necessary before main measurements. Experimentally, it was observed that the surface displacement, induced by the ultrasound wave of LUS, of a cornea phantom was so minute that averaging was necessary. In this study, we discovered that by using the multiple data sets acquired for averaging, we could obtain the system ad hoc characteristic ellipse without performing the conventional calibration process. Furthermore, by utilizing coherent average we could extract the displacement with a 0.14 nm sensitivity. We could also measure the thickness variation, induced by ocular pressure, of the cornea phantom with a resolution of 4.3 μm by measuring the time of a round trip of the ultrasound wave. This straightforward system, composed solely of a 3 × 3 coupler, is expected to promise a compact and efficient solution to diverse applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信