基于自适应滤波和总方向变化的数字全息显微镜相位噪声降低技术

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhao Ma , Jiale Long , Yi Ding , Jianmin Zhang , Jiangtao Xi , Yingrong Li , Yuyang Peng
{"title":"基于自适应滤波和总方向变化的数字全息显微镜相位噪声降低技术","authors":"Zhao Ma ,&nbsp;Jiale Long ,&nbsp;Yi Ding ,&nbsp;Jianmin Zhang ,&nbsp;Jiangtao Xi ,&nbsp;Yingrong Li ,&nbsp;Yuyang Peng","doi":"10.1016/j.optlastec.2024.111807","DOIUrl":null,"url":null,"abstract":"<div><p>Digital holographic microscopy (DHM) has been widely used in the biological and medical fields as an important tool for observing microstructures. However, the imaging quality of DHM is impacted by various random noises introduced by the light source and optical components as well as the experimental environment. In order to reduce the effect of random noise, this paper proposes an adaptive filtering and total directional variation (TDV) method based on the change of principal component analysis (PCA) transform domain to reduce the phase noise. The performance of the proposed method is tested by experiments, showing that it can effectively reduce the random noise of the phase image and retain details of the image well.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase noise reduction in digital holographic microscopy based on adaptive filtering and total directional variation\",\"authors\":\"Zhao Ma ,&nbsp;Jiale Long ,&nbsp;Yi Ding ,&nbsp;Jianmin Zhang ,&nbsp;Jiangtao Xi ,&nbsp;Yingrong Li ,&nbsp;Yuyang Peng\",\"doi\":\"10.1016/j.optlastec.2024.111807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Digital holographic microscopy (DHM) has been widely used in the biological and medical fields as an important tool for observing microstructures. However, the imaging quality of DHM is impacted by various random noises introduced by the light source and optical components as well as the experimental environment. In order to reduce the effect of random noise, this paper proposes an adaptive filtering and total directional variation (TDV) method based on the change of principal component analysis (PCA) transform domain to reduce the phase noise. The performance of the proposed method is tested by experiments, showing that it can effectively reduce the random noise of the phase image and retain details of the image well.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012659\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012659","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

数字全息显微镜(DHM)作为观察微观结构的重要工具,已广泛应用于生物和医学领域。然而,光源和光学元件以及实验环境带来的各种随机噪声会影响 DHM 的成像质量。为了降低随机噪声的影响,本文提出了一种基于主成分分析(PCA)变换域变化的自适应滤波和总方向变化(TDV)方法,以降低相位噪声。实验测试了所提方法的性能,结果表明它能有效降低相位图像的随机噪声,并很好地保留了图像的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase noise reduction in digital holographic microscopy based on adaptive filtering and total directional variation

Digital holographic microscopy (DHM) has been widely used in the biological and medical fields as an important tool for observing microstructures. However, the imaging quality of DHM is impacted by various random noises introduced by the light source and optical components as well as the experimental environment. In order to reduce the effect of random noise, this paper proposes an adaptive filtering and total directional variation (TDV) method based on the change of principal component analysis (PCA) transform domain to reduce the phase noise. The performance of the proposed method is tested by experiments, showing that it can effectively reduce the random noise of the phase image and retain details of the image well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信