反常扩散条件下边界条件对图灵模式的影响数值探索

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Alejandro Valdés López , D. Hernández , Carlos G. Aguilar-Madera , Roxana Cortés Martínez , E.C. Herrera-Hernández
{"title":"反常扩散条件下边界条件对图灵模式的影响数值探索","authors":"Alejandro Valdés López ,&nbsp;D. Hernández ,&nbsp;Carlos G. Aguilar-Madera ,&nbsp;Roxana Cortés Martínez ,&nbsp;E.C. Herrera-Hernández","doi":"10.1016/j.physd.2024.134353","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, it was investigated numerically how boundary conditions influence the formation of Turing-like patterns under various diffusion conditions in complex media. It was found that Dirichlet boundary conditions can induce their symmetry in the patterns once the boundary concentrations of morphogens reach critical thresholds that depend on the diffusion regime and the domain size. We find that anomalous diffusion, characterized in our model by the parameter <span><math><mi>λ</mi></math></span>, can expand or contract the Turing instability region. Then, since superdiffusive conditions lead to a larger instability window, we conjecture that a possible explanation for the emergence of self-similarity in our system may be associated with the excitation of different scales. Our findings generally offer insights into reaction–diffusion systems’ pattern orientation and selection mechanisms.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134353"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary conditions influence on Turing patterns under anomalous diffusion: A numerical exploration\",\"authors\":\"Alejandro Valdés López ,&nbsp;D. Hernández ,&nbsp;Carlos G. Aguilar-Madera ,&nbsp;Roxana Cortés Martínez ,&nbsp;E.C. Herrera-Hernández\",\"doi\":\"10.1016/j.physd.2024.134353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, it was investigated numerically how boundary conditions influence the formation of Turing-like patterns under various diffusion conditions in complex media. It was found that Dirichlet boundary conditions can induce their symmetry in the patterns once the boundary concentrations of morphogens reach critical thresholds that depend on the diffusion regime and the domain size. We find that anomalous diffusion, characterized in our model by the parameter <span><math><mi>λ</mi></math></span>, can expand or contract the Turing instability region. Then, since superdiffusive conditions lead to a larger instability window, we conjecture that a possible explanation for the emergence of self-similarity in our system may be associated with the excitation of different scales. Our findings generally offer insights into reaction–diffusion systems’ pattern orientation and selection mechanisms.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134353\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究对复杂介质中各种扩散条件下边界条件如何影响图灵样图案的形成进行了数值研究。研究发现,一旦形态发生器的边界浓度达到临界阈值,Dirichlet 边界条件就能诱导图案的对称性,而临界阈值取决于扩散机制和域的大小。我们发现,在我们的模型中,以参数 λ 为特征的反常扩散可以扩大或缩小图灵不稳定区域。然后,由于超扩散条件会导致更大的不稳定性窗口,我们推测在我们的系统中出现自相似性的一个可能解释可能与不同尺度的激发有关。我们的发现总体上为反应扩散系统的模式定向和选择机制提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary conditions influence on Turing patterns under anomalous diffusion: A numerical exploration

In this study, it was investigated numerically how boundary conditions influence the formation of Turing-like patterns under various diffusion conditions in complex media. It was found that Dirichlet boundary conditions can induce their symmetry in the patterns once the boundary concentrations of morphogens reach critical thresholds that depend on the diffusion regime and the domain size. We find that anomalous diffusion, characterized in our model by the parameter λ, can expand or contract the Turing instability region. Then, since superdiffusive conditions lead to a larger instability window, we conjecture that a possible explanation for the emergence of self-similarity in our system may be associated with the excitation of different scales. Our findings generally offer insights into reaction–diffusion systems’ pattern orientation and selection mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信