加西亚-普罗切西模块的下降基础

IF 1.5 1区 数学 Q1 MATHEMATICS
Erik Carlsson, Raymond Chou
{"title":"加西亚-普罗切西模块的下降基础","authors":"Erik Carlsson,&nbsp;Raymond Chou","doi":"10.1016/j.aim.2024.109945","DOIUrl":null,"url":null,"abstract":"<div><p>We assign to each Young diagram <em>λ</em> a subset <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mi>maj</mi></mrow></msubsup></math></span> of the collection of Garsia-Stanton descent monomials, and prove that it determines a basis of the Garsia-Procesi module <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>, whose graded character is the Hall-Littlewood polynomial <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span> <span><span>[14]</span></span>, <span><span>[10]</span></span>, <span><span>[29]</span></span>. This basis is a major index analogue of the basis <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>⊂</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined by certain recursions, in the same way that the descent basis is related to the Artin basis of the coinvariant algebra <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which in fact corresponds to the case when <span><math><mi>λ</mi><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>. By anti-symmetrizing a subset of this basis with respect to the corresponding Young subgroup under the Springer action, we obtain a basis in the parabolic case, as well as a corresponding formula for the expansion of <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span>. Despite a similar appearance, it does not appear obvious how to connect the formulas appear to the specialization of the modified Macdonald formula of Haglund, Haiman and Loehr at <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109945"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A descent basis for the Garsia-Procesi module\",\"authors\":\"Erik Carlsson,&nbsp;Raymond Chou\",\"doi\":\"10.1016/j.aim.2024.109945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We assign to each Young diagram <em>λ</em> a subset <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><msup><mrow><mi>λ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mi>maj</mi></mrow></msubsup></math></span> of the collection of Garsia-Stanton descent monomials, and prove that it determines a basis of the Garsia-Procesi module <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>, whose graded character is the Hall-Littlewood polynomial <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span> <span><span>[14]</span></span>, <span><span>[10]</span></span>, <span><span>[29]</span></span>. This basis is a major index analogue of the basis <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>⊂</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined by certain recursions, in the same way that the descent basis is related to the Artin basis of the coinvariant algebra <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which in fact corresponds to the case when <span><math><mi>λ</mi><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span>. By anti-symmetrizing a subset of this basis with respect to the corresponding Young subgroup under the Springer action, we obtain a basis in the parabolic case, as well as a corresponding formula for the expansion of <span><math><msub><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>[</mo><mi>X</mi><mo>;</mo><mi>t</mi><mo>]</mo></math></span>. Despite a similar appearance, it does not appear obvious how to connect the formulas appear to the specialization of the modified Macdonald formula of Haglund, Haiman and Loehr at <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 109945\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004602\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004602","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为每个杨图 λ 指定了一个加西亚-斯坦顿下降单项式集合的子集 Bλ′maj ,并证明它决定了加西亚-普罗切西模块 Rλ 的一个基,而 Rλ 的级数特征是霍尔-利特尔伍德多项式 H˜λ[X;t] [14], [10], [29]。这个基是某些递归定义的基 Bλ⊂Rλ 的大指数类似物,就像下降基与共变代数 Rn 的阿廷基的关系一样,实际上对应于 λ=1n 的情况。通过反对称该基的一个子集与斯普林格作用下的相应杨子群,我们得到了抛物线情况下的基,以及 H˜λ[X;t]的相应展开式。尽管表面相似,但如何将这些公式与哈格伦德、海曼和卢尔在 q=0 时的修正麦克唐纳公式的特殊化联系起来,似乎并不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A descent basis for the Garsia-Procesi module

We assign to each Young diagram λ a subset Bλmaj of the collection of Garsia-Stanton descent monomials, and prove that it determines a basis of the Garsia-Procesi module Rλ, whose graded character is the Hall-Littlewood polynomial H˜λ[X;t] [14], [10], [29]. This basis is a major index analogue of the basis BλRλ defined by certain recursions, in the same way that the descent basis is related to the Artin basis of the coinvariant algebra Rn, which in fact corresponds to the case when λ=1n. By anti-symmetrizing a subset of this basis with respect to the corresponding Young subgroup under the Springer action, we obtain a basis in the parabolic case, as well as a corresponding formula for the expansion of H˜λ[X;t]. Despite a similar appearance, it does not appear obvious how to connect the formulas appear to the specialization of the modified Macdonald formula of Haglund, Haiman and Loehr at q=0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信