{"title":"Anemarrhena asphodeloides Bunge 总皂苷通过调节 MAOA 活性降低血脂,从而增强小鼠和秀丽隐杆线虫的防御机制","authors":"","doi":"10.1016/j.jep.2024.118814","DOIUrl":null,"url":null,"abstract":"<div><h3>Ethnopharmacological relevance</h3><p>Within <em>Anemarrhena asphodeloides</em> Bunge (AAB), the pivotal bioactive constituents are identified as <em>Anemarrhena asphodeloides</em> Bunge total saponins (ABS). In traditional pharmacology, ABS has exhibited notable anti-inflammatory, hypoglycemic, and cardioprotective properties. Despite these observed effects, the specific protective mechanisms of ABS against metabolic diseases and improving the endocrine system remain largely uncharted.</p></div><div><h3>Aim to study</h3><p>This work intends to shed light on the effects and intrinsic mechanisms of ABS on metabolic diseases.</p></div><div><h3>Materials and methods</h3><p>The characterization of ABS components was achieved through High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS). To evaluate ABS's anti-inflammatory efficacy, mouse macrophages underwent analysis using the Griess method. Induced differentiation of mouse fibroblasts was assessed through Oil Red O staining. In an obesity model with C57BL/6 N mice, ABS administration prompted measurements of glucose and insulin tolerance. Western blot analysis quantified lipolysis and anti-inflammatory protein expression. Nile red staining gauged body fat content in <em>C. elegans</em> post-ABS treatment. The mechanism of ABS action was elucidated through mRNA sequencing, further validated using RNA interference technology, and nematode mutants.</p></div><div><h3>Results</h3><p>ABS showcased the ability to diminish Nitric Oxide (NO) production in inflammatory macrophages and shrink adipocyte lipid droplets. In mice experiments, ABS was effective in alleviating fat accumulation and affecting serum lipid metabolism in diabetic mice. It enhanced oral glucose tolerance and insulin tolerance while increasing lipolysis-associated protein expression. ABS notably reduced fat content in <em>C. elegans</em>. Mechanistically, ABS downregulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and monoamine oxidase A (MAOA) expression while enhancing UGT, <em>ilys-2</em>, and <em>ilys-3</em>. Lipolysis emerged as a pivotal pathway for ABS in the therapeutic intervention of metabolic diseases.</p></div><div><h3>Conclusions</h3><p>Our investigation has revealed that ABS exert a role in combating metabolic diseases by enhancing the body's defense mechanisms. ABS activate the NLRP3-neurotransmitter-visceral adipose pathway in mice, thereby bolstering resistance and diminishing fat accumulation. In <em>C. elegans</em>, ABS downregulated the expression of MAOA, bolstered resistance, and augmented glucuronidase activity, consequently leading to a reduction in fat content.</p></div>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anemarrhena asphodeloides Bunge total saponins lower lipid via modulating MAOA activity to enhance defense mechanisms in mice and C. elegans\",\"authors\":\"\",\"doi\":\"10.1016/j.jep.2024.118814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Ethnopharmacological relevance</h3><p>Within <em>Anemarrhena asphodeloides</em> Bunge (AAB), the pivotal bioactive constituents are identified as <em>Anemarrhena asphodeloides</em> Bunge total saponins (ABS). In traditional pharmacology, ABS has exhibited notable anti-inflammatory, hypoglycemic, and cardioprotective properties. Despite these observed effects, the specific protective mechanisms of ABS against metabolic diseases and improving the endocrine system remain largely uncharted.</p></div><div><h3>Aim to study</h3><p>This work intends to shed light on the effects and intrinsic mechanisms of ABS on metabolic diseases.</p></div><div><h3>Materials and methods</h3><p>The characterization of ABS components was achieved through High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS). To evaluate ABS's anti-inflammatory efficacy, mouse macrophages underwent analysis using the Griess method. Induced differentiation of mouse fibroblasts was assessed through Oil Red O staining. In an obesity model with C57BL/6 N mice, ABS administration prompted measurements of glucose and insulin tolerance. Western blot analysis quantified lipolysis and anti-inflammatory protein expression. Nile red staining gauged body fat content in <em>C. elegans</em> post-ABS treatment. The mechanism of ABS action was elucidated through mRNA sequencing, further validated using RNA interference technology, and nematode mutants.</p></div><div><h3>Results</h3><p>ABS showcased the ability to diminish Nitric Oxide (NO) production in inflammatory macrophages and shrink adipocyte lipid droplets. In mice experiments, ABS was effective in alleviating fat accumulation and affecting serum lipid metabolism in diabetic mice. It enhanced oral glucose tolerance and insulin tolerance while increasing lipolysis-associated protein expression. ABS notably reduced fat content in <em>C. elegans</em>. Mechanistically, ABS downregulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and monoamine oxidase A (MAOA) expression while enhancing UGT, <em>ilys-2</em>, and <em>ilys-3</em>. Lipolysis emerged as a pivotal pathway for ABS in the therapeutic intervention of metabolic diseases.</p></div><div><h3>Conclusions</h3><p>Our investigation has revealed that ABS exert a role in combating metabolic diseases by enhancing the body's defense mechanisms. ABS activate the NLRP3-neurotransmitter-visceral adipose pathway in mice, thereby bolstering resistance and diminishing fat accumulation. In <em>C. elegans</em>, ABS downregulated the expression of MAOA, bolstered resistance, and augmented glucuronidase activity, consequently leading to a reduction in fat content.</p></div>\",\"PeriodicalId\":15761,\"journal\":{\"name\":\"Journal of ethnopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ethnopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378874124011139\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378874124011139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anemarrhena asphodeloides Bunge total saponins lower lipid via modulating MAOA activity to enhance defense mechanisms in mice and C. elegans
Ethnopharmacological relevance
Within Anemarrhena asphodeloides Bunge (AAB), the pivotal bioactive constituents are identified as Anemarrhena asphodeloides Bunge total saponins (ABS). In traditional pharmacology, ABS has exhibited notable anti-inflammatory, hypoglycemic, and cardioprotective properties. Despite these observed effects, the specific protective mechanisms of ABS against metabolic diseases and improving the endocrine system remain largely uncharted.
Aim to study
This work intends to shed light on the effects and intrinsic mechanisms of ABS on metabolic diseases.
Materials and methods
The characterization of ABS components was achieved through High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS). To evaluate ABS's anti-inflammatory efficacy, mouse macrophages underwent analysis using the Griess method. Induced differentiation of mouse fibroblasts was assessed through Oil Red O staining. In an obesity model with C57BL/6 N mice, ABS administration prompted measurements of glucose and insulin tolerance. Western blot analysis quantified lipolysis and anti-inflammatory protein expression. Nile red staining gauged body fat content in C. elegans post-ABS treatment. The mechanism of ABS action was elucidated through mRNA sequencing, further validated using RNA interference technology, and nematode mutants.
Results
ABS showcased the ability to diminish Nitric Oxide (NO) production in inflammatory macrophages and shrink adipocyte lipid droplets. In mice experiments, ABS was effective in alleviating fat accumulation and affecting serum lipid metabolism in diabetic mice. It enhanced oral glucose tolerance and insulin tolerance while increasing lipolysis-associated protein expression. ABS notably reduced fat content in C. elegans. Mechanistically, ABS downregulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and monoamine oxidase A (MAOA) expression while enhancing UGT, ilys-2, and ilys-3. Lipolysis emerged as a pivotal pathway for ABS in the therapeutic intervention of metabolic diseases.
Conclusions
Our investigation has revealed that ABS exert a role in combating metabolic diseases by enhancing the body's defense mechanisms. ABS activate the NLRP3-neurotransmitter-visceral adipose pathway in mice, thereby bolstering resistance and diminishing fat accumulation. In C. elegans, ABS downregulated the expression of MAOA, bolstered resistance, and augmented glucuronidase activity, consequently leading to a reduction in fat content.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.