H(div)-conforming 有限元张量与约束条件

IF 1.4 Q2 MATHEMATICS, APPLIED
Long Chen , Xuehai Huang
{"title":"H(div)-conforming 有限元张量与约束条件","authors":"Long Chen ,&nbsp;Xuehai Huang","doi":"10.1016/j.rinam.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><p>A unified construction of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mo>div</mo><mo>)</mo></mrow></mrow></math></span>-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional faces. The developed finite element spaces are <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mo>div</mo><mo>)</mo></mrow></mrow></math></span>-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100494"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000645/pdfft?md5=8716e43d076745ec3408e0af1d9f2173&pid=1-s2.0-S2590037424000645-main.pdf","citationCount":"0","resultStr":"{\"title\":\"H(div)-conforming finite element tensors with constraints\",\"authors\":\"Long Chen ,&nbsp;Xuehai Huang\",\"doi\":\"10.1016/j.rinam.2024.100494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A unified construction of <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mo>div</mo><mo>)</mo></mrow></mrow></math></span>-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional faces. The developed finite element spaces are <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mo>div</mo><mo>)</mo></mrow></mrow></math></span>-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100494\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000645/pdfft?md5=8716e43d076745ec3408e0af1d9f2173&pid=1-s2.0-S2590037424000645-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了 H(div)-conforming 有限元张量的统一构造,包括矢量张量、对称矩阵张量、无痕矩阵张量,以及一般具有线性约束的张量。它基于将拉格朗日元素几何分解为每个子复数上的气泡函数。子复数上的每个张量进一步分解为切向分量和法向分量。切向分量构成气泡函数空间,而法线分量则是迹线的特征。一些自由度可以重新分配到 (n-1) 维面。所开发的有限元空间符合 H(div),并满足离散 inf-sup 条件。此外,还建立了约束张量空间的内在基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H(div)-conforming finite element tensors with constraints

A unified construction of H(div)-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to (n1)-dimensional faces. The developed finite element spaces are H(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信