移动主机上的无人机群路由新方案

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
{"title":"移动主机上的无人机群路由新方案","authors":"","doi":"10.1016/j.engappai.2024.109337","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing use of drones across various sectors demands optimized deployment strategies under diverse constraints. This paper tackles the Multiple Capacitated Mobile Depot Vehicles Routing Problem (mCMoD-VRP), a challenging variant of the Vehicle Routing Problem (VRP) where multiple drones with limited flight range operate from a mobile depot. The goal is to maximize target coverage while considering flight endurance, depot mobility, and drone multiplicity. We introduce a novel evolutionary algorithm, Evolutionary Optimization for Synchronized Routing Problem (EOSRP), which constructs synchronized routes for the drone swarm, accounting for all constraints. EOSRP distinguishes itself with specialized genetic operators, specifically designed to efficiently handle the constraints of mCMoD-VRP, enhancing both exploration and exploitation of the search space. EOSRP also facilitates collaborative planning among drones, enabling them to share targets and optimize routes collectively, resulting in more efficient use of flight range capacity. Comprehensive simulations on benchmark problems demonstrate that EOSRP consistently outperforms a serialized version of our previous single-drone algorithm, Genetic Algorithm for Capacitated Mobile Depot (GA-CMoD), achieving an average of 8.7% higher target coverage and 7.28% more efficient use of flight range capacity. EOSRP’s ability to generate synchronized solutions through collaborative planning leads to significantly improved mission efficiency.</p></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel solution for routing a swarm of drones operated on a mobile host\",\"authors\":\"\",\"doi\":\"10.1016/j.engappai.2024.109337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing use of drones across various sectors demands optimized deployment strategies under diverse constraints. This paper tackles the Multiple Capacitated Mobile Depot Vehicles Routing Problem (mCMoD-VRP), a challenging variant of the Vehicle Routing Problem (VRP) where multiple drones with limited flight range operate from a mobile depot. The goal is to maximize target coverage while considering flight endurance, depot mobility, and drone multiplicity. We introduce a novel evolutionary algorithm, Evolutionary Optimization for Synchronized Routing Problem (EOSRP), which constructs synchronized routes for the drone swarm, accounting for all constraints. EOSRP distinguishes itself with specialized genetic operators, specifically designed to efficiently handle the constraints of mCMoD-VRP, enhancing both exploration and exploitation of the search space. EOSRP also facilitates collaborative planning among drones, enabling them to share targets and optimize routes collectively, resulting in more efficient use of flight range capacity. Comprehensive simulations on benchmark problems demonstrate that EOSRP consistently outperforms a serialized version of our previous single-drone algorithm, Genetic Algorithm for Capacitated Mobile Depot (GA-CMoD), achieving an average of 8.7% higher target coverage and 7.28% more efficient use of flight range capacity. EOSRP’s ability to generate synchronized solutions through collaborative planning leads to significantly improved mission efficiency.</p></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624014957\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624014957","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着无人机在各行各业的应用日益广泛,需要在各种约束条件下优化部署策略。本文探讨了多容量移动仓库车辆路由问题(mCMoD-VRP),这是车辆路由问题(VRP)的一个具有挑战性的变体,在该问题中,飞行距离有限的多架无人机从一个移动仓库起飞。该问题的目标是在考虑飞行耐力、仓库机动性和无人机数量的同时,最大限度地扩大目标覆盖范围。我们引入了一种新颖的进化算法--同步路由问题进化优化算法(EOSRP),它能为无人机群构建同步路由,同时考虑到所有约束条件。EOSRP 的与众不同之处在于它有专门的遗传算子,专门用于有效处理 mCMoD-VRP 的约束条件,增强了对搜索空间的探索和利用。EOSRP 还促进了无人机之间的协作规划,使它们能够共享目标并集体优化路线,从而更有效地利用飞行距离能力。对基准问题进行的综合模拟证明,EOSRP 的性能始终优于我们以前的单无人机算法--"有能力移动仓库遗传算法"(GA-CMoD)的序列化版本,其目标覆盖率平均提高了 8.7%,飞行距离容量的使用效率提高了 7.28%。EOSRP 通过协作规划生成同步解决方案的能力显著提高了任务效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel solution for routing a swarm of drones operated on a mobile host

The increasing use of drones across various sectors demands optimized deployment strategies under diverse constraints. This paper tackles the Multiple Capacitated Mobile Depot Vehicles Routing Problem (mCMoD-VRP), a challenging variant of the Vehicle Routing Problem (VRP) where multiple drones with limited flight range operate from a mobile depot. The goal is to maximize target coverage while considering flight endurance, depot mobility, and drone multiplicity. We introduce a novel evolutionary algorithm, Evolutionary Optimization for Synchronized Routing Problem (EOSRP), which constructs synchronized routes for the drone swarm, accounting for all constraints. EOSRP distinguishes itself with specialized genetic operators, specifically designed to efficiently handle the constraints of mCMoD-VRP, enhancing both exploration and exploitation of the search space. EOSRP also facilitates collaborative planning among drones, enabling them to share targets and optimize routes collectively, resulting in more efficient use of flight range capacity. Comprehensive simulations on benchmark problems demonstrate that EOSRP consistently outperforms a serialized version of our previous single-drone algorithm, Genetic Algorithm for Capacitated Mobile Depot (GA-CMoD), achieving an average of 8.7% higher target coverage and 7.28% more efficient use of flight range capacity. EOSRP’s ability to generate synchronized solutions through collaborative planning leads to significantly improved mission efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信