Chavelli M. Kensen , Rita Simões , Anja Betgen , Lisa Wiersema , Doenja M.J. Lambregts , Femke P. Peters , Corrie A.M. Marijnen , Uulke A. van der Heide , Tomas M. Janssen
{"title":"为在线自适应磁共振图像引导放射治疗开发直肠肿瘤自动分割模型时纳入患者特异性信息","authors":"Chavelli M. Kensen , Rita Simões , Anja Betgen , Lisa Wiersema , Doenja M.J. Lambregts , Femke P. Peters , Corrie A.M. Marijnen , Uulke A. van der Heide , Tomas M. Janssen","doi":"10.1016/j.phro.2024.100648","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors.</p></div><div><h3>Materials and methods</h3><p>243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage.</p></div><div><h3>Results</h3><p>All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1–76.6) mm for MRI_only segmentation, 9.9 (range: 2.5–38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4–17.8) mm for PSF_1 and 4.8 (range: 1.7–26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014).</p></div><div><h3>Conclusion</h3><p>Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100648"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624001180/pdfft?md5=bf30e0e5baddbf3b8635126444c1301f&pid=1-s2.0-S2405631624001180-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy\",\"authors\":\"Chavelli M. Kensen , Rita Simões , Anja Betgen , Lisa Wiersema , Doenja M.J. Lambregts , Femke P. Peters , Corrie A.M. Marijnen , Uulke A. van der Heide , Tomas M. Janssen\",\"doi\":\"10.1016/j.phro.2024.100648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors.</p></div><div><h3>Materials and methods</h3><p>243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage.</p></div><div><h3>Results</h3><p>All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1–76.6) mm for MRI_only segmentation, 9.9 (range: 2.5–38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4–17.8) mm for PSF_1 and 4.8 (range: 1.7–26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014).</p></div><div><h3>Conclusion</h3><p>Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"32 \",\"pages\":\"Article 100648\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001180/pdfft?md5=bf30e0e5baddbf3b8635126444c1301f&pid=1-s2.0-S2405631624001180-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Incorporating patient-specific information for the development of rectal tumor auto-segmentation models for online adaptive magnetic resonance Image-guided radiotherapy
Background and purpose
In online adaptive magnetic resonance image (MRI)-guided radiotherapy (MRIgRT), manual contouring of rectal tumors on daily images is labor-intensive and time-consuming. Automation of this task is complex due to substantial variation in tumor shape and location between patients. The aim of this work was to investigate different approaches of propagating patient-specific prior information to the online adaptive treatment fractions to improve deep-learning based auto-segmentation of rectal tumors.
Materials and methods
243 T2-weighted MRI scans of 49 rectal cancer patients treated on the 1.5T MR-Linear accelerator (MR-Linac) were utilized to train models to segment rectal tumors. As benchmark, an MRI_only auto-segmentation model was trained. Three approaches of including a patient-specific prior were studied: 1. include the segmentations of fraction 1 as extra input channel for the auto-segmentation of subsequent fractions, 2. fine-tuning of the MRI_only model to fraction 1 (PSF_1) and 3. fine-tuning of the MRI_only model on all earlier fractions (PSF_cumulative). Auto-segmentations were compared to the manual segmentation using geometric similarity metrics. Clinical impact was assessed by evaluating post-treatment target coverage.
Results
All patient-specific methods outperformed the MRI_only segmentation approach. Median 95th percentile Hausdorff (95HD) were 22.0 (range: 6.1–76.6) mm for MRI_only segmentation, 9.9 (range: 2.5–38.2) mm for MRI+prior segmentation, 6.4 (range: 2.4–17.8) mm for PSF_1 and 4.8 (range: 1.7–26.9) mm for PSF_cumulative. PSF_cumulative was found to be superior to PSF_1 from fraction 4 onward (p = 0.014).
Conclusion
Patient-specific fine-tuning of automatically segmented rectal tumors, using images and segmentations from all previous fractions, yields superior quality compared to other auto-segmentation approaches.