Michelle Jarvie-Eggart , Shari L. Stockero , Alfred Owusu-Ansah
{"title":"影响教师采用工程技术的因素:定性研究","authors":"Michelle Jarvie-Eggart , Shari L. Stockero , Alfred Owusu-Ansah","doi":"10.1016/j.caeo.2024.100221","DOIUrl":null,"url":null,"abstract":"<div><p>With technologies changing faster than ever before, engineering faculty must continuously update the technologies they use and teach to students to meet accreditation requirements and keep up with industry standards. Many do not, however. Additionally, existing models of technology adoption do not account for all variability within intention to use a technology, nor its actual use. Informed by the Unified Theory of Acceptance and Use of Technology (UTAUT), this study examined which constructs from prior models apply to engineering faculty's adoption of industry-specific technologies, as well as other factors influencing faculty adoption of these technologies for their teaching or research. We interviewed 21 engineering faculty at a Midwestern United States STEM-focused institution about their adoption of engineering technologies. Deductive and inductive coding were used to identify themes within the qualitative data. Constructs from existing models were confirmed to influence faculty engineering technology adoption. We also identified specific Facilitating Conditions (Other People, Digital Resources, Non-Digital Resources, Time, and Formal Training) that faculty leverage to adopt new engineering technologies, and uncovered two additional themes—Access and Personal Traits, including several component traits (Persistence, Humility, Self Efficacy, Growth Mindset, Ambiguity Acceptance, and Curiosity) that influence faculty engineering technology adoption. We propose a new Theory of Faculty Adoption of Engineering Technologies specific to faculty adoption of new engineering technologies. These findings have the potential to help universities determine how to effectively support faculty in providing their students with relevant technological skills for entry into the engineering workforce.</p></div>","PeriodicalId":100322,"journal":{"name":"Computers and Education Open","volume":"7 ","pages":"Article 100221"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666557324000612/pdfft?md5=3669ec0370a98d0c7cf58b081181317e&pid=1-s2.0-S2666557324000612-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Factors influencing faculty's adoption of engineering technology: A qualitative study\",\"authors\":\"Michelle Jarvie-Eggart , Shari L. Stockero , Alfred Owusu-Ansah\",\"doi\":\"10.1016/j.caeo.2024.100221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With technologies changing faster than ever before, engineering faculty must continuously update the technologies they use and teach to students to meet accreditation requirements and keep up with industry standards. Many do not, however. Additionally, existing models of technology adoption do not account for all variability within intention to use a technology, nor its actual use. Informed by the Unified Theory of Acceptance and Use of Technology (UTAUT), this study examined which constructs from prior models apply to engineering faculty's adoption of industry-specific technologies, as well as other factors influencing faculty adoption of these technologies for their teaching or research. We interviewed 21 engineering faculty at a Midwestern United States STEM-focused institution about their adoption of engineering technologies. Deductive and inductive coding were used to identify themes within the qualitative data. Constructs from existing models were confirmed to influence faculty engineering technology adoption. We also identified specific Facilitating Conditions (Other People, Digital Resources, Non-Digital Resources, Time, and Formal Training) that faculty leverage to adopt new engineering technologies, and uncovered two additional themes—Access and Personal Traits, including several component traits (Persistence, Humility, Self Efficacy, Growth Mindset, Ambiguity Acceptance, and Curiosity) that influence faculty engineering technology adoption. We propose a new Theory of Faculty Adoption of Engineering Technologies specific to faculty adoption of new engineering technologies. These findings have the potential to help universities determine how to effectively support faculty in providing their students with relevant technological skills for entry into the engineering workforce.</p></div>\",\"PeriodicalId\":100322,\"journal\":{\"name\":\"Computers and Education Open\",\"volume\":\"7 \",\"pages\":\"Article 100221\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666557324000612/pdfft?md5=3669ec0370a98d0c7cf58b081181317e&pid=1-s2.0-S2666557324000612-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Education Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666557324000612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666557324000612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Factors influencing faculty's adoption of engineering technology: A qualitative study
With technologies changing faster than ever before, engineering faculty must continuously update the technologies they use and teach to students to meet accreditation requirements and keep up with industry standards. Many do not, however. Additionally, existing models of technology adoption do not account for all variability within intention to use a technology, nor its actual use. Informed by the Unified Theory of Acceptance and Use of Technology (UTAUT), this study examined which constructs from prior models apply to engineering faculty's adoption of industry-specific technologies, as well as other factors influencing faculty adoption of these technologies for their teaching or research. We interviewed 21 engineering faculty at a Midwestern United States STEM-focused institution about their adoption of engineering technologies. Deductive and inductive coding were used to identify themes within the qualitative data. Constructs from existing models were confirmed to influence faculty engineering technology adoption. We also identified specific Facilitating Conditions (Other People, Digital Resources, Non-Digital Resources, Time, and Formal Training) that faculty leverage to adopt new engineering technologies, and uncovered two additional themes—Access and Personal Traits, including several component traits (Persistence, Humility, Self Efficacy, Growth Mindset, Ambiguity Acceptance, and Curiosity) that influence faculty engineering technology adoption. We propose a new Theory of Faculty Adoption of Engineering Technologies specific to faculty adoption of new engineering technologies. These findings have the potential to help universities determine how to effectively support faculty in providing their students with relevant technological skills for entry into the engineering workforce.