利用半超分辨率广义泛函模型,在智能反射面辅助下进行大规模多输入多输出(MIMO)系统信道估计

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mehrdad Momen-Tayefeh , Mehrshad Momen-Tayefeh , S. AmirAli GH. Ghahramani , Ali Mohammad Afshin Hemmatyar
{"title":"利用半超分辨率广义泛函模型,在智能反射面辅助下进行大规模多输入多输出(MIMO)系统信道估计","authors":"Mehrdad Momen-Tayefeh ,&nbsp;Mehrshad Momen-Tayefeh ,&nbsp;S. AmirAli GH. Ghahramani ,&nbsp;Ali Mohammad Afshin Hemmatyar","doi":"10.1016/j.sigpro.2024.109710","DOIUrl":null,"url":null,"abstract":"<div><p>Intelligent Reflecting Surfaces (IRSs) coupled with Massive Multiple-Input-Multiple-Output (MIMO) millimeter wave (mmWave) systems hold immense promise for the next generation of wireless communications. However, harnessing their full potential requires accurate channel state information (CSI). Despite the benefits of IRSs, such as passive element integration and energy efficiency, precise channel estimation becomes a formidable challenge due to the absence of active elements. In this paper, we tackle these challenges by employing generative adversarial networks (GANs) to estimate the channel’s cascade matrix between the base station (BS) and mobile users. To leverage the high correlation among adjacent elements in the IRS, we propose turning off a majority of these elements during the estimation phase, effectively creating a low-resolution channel. We then introduce the semi-super resolution GAN (SSRGAN) model, capable of inferring channel values for the deactivated elements based on existing correlations. Our new SSRGAN-based channel estimation method transforms low-resolution channel data into high-resolution channel data. Through a comprehensive comparative analysis, our study showcases the superior performance of our SSRGAN channel estimation method compared to established benchmark schemes.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109710"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel estimation for Massive MIMO systems aided by intelligent reflecting surface using semi-super resolution GAN\",\"authors\":\"Mehrdad Momen-Tayefeh ,&nbsp;Mehrshad Momen-Tayefeh ,&nbsp;S. AmirAli GH. Ghahramani ,&nbsp;Ali Mohammad Afshin Hemmatyar\",\"doi\":\"10.1016/j.sigpro.2024.109710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intelligent Reflecting Surfaces (IRSs) coupled with Massive Multiple-Input-Multiple-Output (MIMO) millimeter wave (mmWave) systems hold immense promise for the next generation of wireless communications. However, harnessing their full potential requires accurate channel state information (CSI). Despite the benefits of IRSs, such as passive element integration and energy efficiency, precise channel estimation becomes a formidable challenge due to the absence of active elements. In this paper, we tackle these challenges by employing generative adversarial networks (GANs) to estimate the channel’s cascade matrix between the base station (BS) and mobile users. To leverage the high correlation among adjacent elements in the IRS, we propose turning off a majority of these elements during the estimation phase, effectively creating a low-resolution channel. We then introduce the semi-super resolution GAN (SSRGAN) model, capable of inferring channel values for the deactivated elements based on existing correlations. Our new SSRGAN-based channel estimation method transforms low-resolution channel data into high-resolution channel data. Through a comprehensive comparative analysis, our study showcases the superior performance of our SSRGAN channel estimation method compared to established benchmark schemes.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109710\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016516842400330X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842400330X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

智能反射面(IRS)与大规模多输入多输出(MIMO)毫米波(mmWave)系统相结合,为下一代无线通信带来了巨大前景。然而,要充分发挥其潜力,需要准确的信道状态信息(CSI)。尽管 IRS 具有无源元件集成和节能等优点,但由于缺乏有源元件,精确信道估计成为一项艰巨的挑战。在本文中,我们采用生成对抗网络(GAN)来估计基站(BS)和移动用户之间的信道级联矩阵,从而应对这些挑战。为了利用 IRS 中相邻元素之间的高相关性,我们建议在估计阶段关闭这些元素中的大部分,从而有效地创建一个低分辨率信道。然后,我们引入了半超分辨率广义广域网(SSRGAN)模型,该模型能够根据现有相关性推断出停用信元的信道值。我们基于 SSRGAN 的新信道估计方法可将低分辨率信道数据转换为高分辨率信道数据。通过全面的比较分析,我们的研究展示了 SSRGAN 信道估计方法与现有基准方案相比的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel estimation for Massive MIMO systems aided by intelligent reflecting surface using semi-super resolution GAN

Intelligent Reflecting Surfaces (IRSs) coupled with Massive Multiple-Input-Multiple-Output (MIMO) millimeter wave (mmWave) systems hold immense promise for the next generation of wireless communications. However, harnessing their full potential requires accurate channel state information (CSI). Despite the benefits of IRSs, such as passive element integration and energy efficiency, precise channel estimation becomes a formidable challenge due to the absence of active elements. In this paper, we tackle these challenges by employing generative adversarial networks (GANs) to estimate the channel’s cascade matrix between the base station (BS) and mobile users. To leverage the high correlation among adjacent elements in the IRS, we propose turning off a majority of these elements during the estimation phase, effectively creating a low-resolution channel. We then introduce the semi-super resolution GAN (SSRGAN) model, capable of inferring channel values for the deactivated elements based on existing correlations. Our new SSRGAN-based channel estimation method transforms low-resolution channel data into high-resolution channel data. Through a comprehensive comparative analysis, our study showcases the superior performance of our SSRGAN channel estimation method compared to established benchmark schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信