Jie Zeng , Taoqiang Ling , Xin Li , Bochuan Tan , Rong Chen , Juxiang Wei , Wenpo Li
{"title":"增强 5-氨基-3-溴-1-甲基吲唑在硫酸环境中对铜的缓蚀性能","authors":"Jie Zeng , Taoqiang Ling , Xin Li , Bochuan Tan , Rong Chen , Juxiang Wei , Wenpo Li","doi":"10.1016/j.molstruc.2024.140039","DOIUrl":null,"url":null,"abstract":"<div><p>The corrosion inhibitor 5-amino-3‑bromo-1-methylindazole (ABMI) with multiple substituents can effectively protect the copper substrate. According to the electrochemical experiment results, at 298 K, 3 mM ABMI may suppress copper corrosion by 92.1 %. Furthermore, going from 298 K to 308 K raises the temperature at which 3 mM ABMI may continue to suppress corrosion with an efficiency exceeding 90 %. The weight loss test, SEM, AFM, and XRD data all reveal that the presence of ABMI efficiently prevents the corrosion media from dissolving the copper substrate. The <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mrow><mi>a</mi><mi>d</mi><mi>s</mi></mrow><mn>0</mn></msubsup></mrow></math></span> value of ABMI is −32.97 kJ/mol, demonstrating that it works on the metal/solution interface through physical adsorption and chemisorption. The results of molecular dynamics modeling and quantum chemical computation show that ABMI adsorbs to the metal superficies in a nearly parallel way, minimizing the exposure area among the metal superficies with the medium with corrosive substances and providing the best possible protection for copper.</p></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1321 ","pages":"Article 140039"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced corrosion inhibition performance of 5-amino-3‑bromo-1-methylindazole on copper in sulfuric acid environments\",\"authors\":\"Jie Zeng , Taoqiang Ling , Xin Li , Bochuan Tan , Rong Chen , Juxiang Wei , Wenpo Li\",\"doi\":\"10.1016/j.molstruc.2024.140039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The corrosion inhibitor 5-amino-3‑bromo-1-methylindazole (ABMI) with multiple substituents can effectively protect the copper substrate. According to the electrochemical experiment results, at 298 K, 3 mM ABMI may suppress copper corrosion by 92.1 %. Furthermore, going from 298 K to 308 K raises the temperature at which 3 mM ABMI may continue to suppress corrosion with an efficiency exceeding 90 %. The weight loss test, SEM, AFM, and XRD data all reveal that the presence of ABMI efficiently prevents the corrosion media from dissolving the copper substrate. The <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mrow><mi>a</mi><mi>d</mi><mi>s</mi></mrow><mn>0</mn></msubsup></mrow></math></span> value of ABMI is −32.97 kJ/mol, demonstrating that it works on the metal/solution interface through physical adsorption and chemisorption. The results of molecular dynamics modeling and quantum chemical computation show that ABMI adsorbs to the metal superficies in a nearly parallel way, minimizing the exposure area among the metal superficies with the medium with corrosive substances and providing the best possible protection for copper.</p></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1321 \",\"pages\":\"Article 140039\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024025481\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024025481","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
具有多个取代基的缓蚀剂 5-氨基-3-溴-1-甲基吲唑(ABMI)可有效保护铜基材。电化学实验结果表明,在 298 K 下,3 mM ABMI 可抑制 92.1 % 的铜腐蚀。此外,从 298 K 到 308 K 的温度升高,3 mM ABMI 可继续抑制腐蚀,效率超过 90%。失重测试、扫描电子显微镜、原子力显微镜和 XRD 数据都表明,ABMI 的存在能有效防止腐蚀介质溶解铜基底。ABMI 的 ΔGads0 值为 -32.97 kJ/mol,表明它通过物理吸附和化学吸附作用于金属/溶液界面。分子动力学建模和量子化学计算的结果表明,ABMI 以近乎平行的方式吸附在金属表面,最大限度地减少了金属表面与含有腐蚀性物质的介质之间的接触面积,为铜提供了最佳保护。
Enhanced corrosion inhibition performance of 5-amino-3‑bromo-1-methylindazole on copper in sulfuric acid environments
The corrosion inhibitor 5-amino-3‑bromo-1-methylindazole (ABMI) with multiple substituents can effectively protect the copper substrate. According to the electrochemical experiment results, at 298 K, 3 mM ABMI may suppress copper corrosion by 92.1 %. Furthermore, going from 298 K to 308 K raises the temperature at which 3 mM ABMI may continue to suppress corrosion with an efficiency exceeding 90 %. The weight loss test, SEM, AFM, and XRD data all reveal that the presence of ABMI efficiently prevents the corrosion media from dissolving the copper substrate. The value of ABMI is −32.97 kJ/mol, demonstrating that it works on the metal/solution interface through physical adsorption and chemisorption. The results of molecular dynamics modeling and quantum chemical computation show that ABMI adsorbs to the metal superficies in a nearly parallel way, minimizing the exposure area among the metal superficies with the medium with corrosive substances and providing the best possible protection for copper.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.