{"title":"紫外-A 光下操作因素对 Sr-Au-ZnO 水悬浮液中亚甲基蓝染料光催化降解的影响","authors":"","doi":"10.1016/j.molstruc.2024.139993","DOIUrl":null,"url":null,"abstract":"<div><p>Any of several processes that break down dyes, ideally into harmless chemicals, is referred to as industrial dye degradation. Water waste discharges various colors, particularly those used in the textile industry like methyl red and methylene blue, into ecosystems, leading to significant pollution of the water supply. Under UV-A irradiation, the photocatalytic degradation of a commercial heterocyclic aromatic chemical molecule called methylene blue (MB) has been investigated using an aqueous solution of Sr-Au-ZnO as a photocatalyst. Research has been done on how different process characteristics affect the degradation process. For the mineralization of MB dye under UV-A light, it was found that the optimized Sr-Au-ZnO was more effective than commercial catalysts (ZnO and benchmark photocatalyst Degussa P25), single metal dopants (Sr-ZnO, Au-ZnO), and prepared ZnO. The effects of operational parameters, such as the quantity of photocatalyst, dye concentration, and starting pH, on the photo-mineralization of MB are analyzed before optimal values are given. Chemical oxygen demand (COD) measurements have confirmed that MB is mineralized. Using GC–MS analysis, the intermediates produced during photodegradation were predicted, and an appropriate degradation pathway was suggested. This procedure can be used for treating wastewater from sewage since optimized Sr-Au-ZnO is reusable.</p></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of operational factors on the photocatalytic degradation of methylene blue dye in aqueous Sr-Au-ZnO suspensions under UV-A light\",\"authors\":\"\",\"doi\":\"10.1016/j.molstruc.2024.139993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Any of several processes that break down dyes, ideally into harmless chemicals, is referred to as industrial dye degradation. Water waste discharges various colors, particularly those used in the textile industry like methyl red and methylene blue, into ecosystems, leading to significant pollution of the water supply. Under UV-A irradiation, the photocatalytic degradation of a commercial heterocyclic aromatic chemical molecule called methylene blue (MB) has been investigated using an aqueous solution of Sr-Au-ZnO as a photocatalyst. Research has been done on how different process characteristics affect the degradation process. For the mineralization of MB dye under UV-A light, it was found that the optimized Sr-Au-ZnO was more effective than commercial catalysts (ZnO and benchmark photocatalyst Degussa P25), single metal dopants (Sr-ZnO, Au-ZnO), and prepared ZnO. The effects of operational parameters, such as the quantity of photocatalyst, dye concentration, and starting pH, on the photo-mineralization of MB are analyzed before optimal values are given. Chemical oxygen demand (COD) measurements have confirmed that MB is mineralized. Using GC–MS analysis, the intermediates produced during photodegradation were predicted, and an appropriate degradation pathway was suggested. This procedure can be used for treating wastewater from sewage since optimized Sr-Au-ZnO is reusable.</p></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228602402502X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228602402502X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The influence of operational factors on the photocatalytic degradation of methylene blue dye in aqueous Sr-Au-ZnO suspensions under UV-A light
Any of several processes that break down dyes, ideally into harmless chemicals, is referred to as industrial dye degradation. Water waste discharges various colors, particularly those used in the textile industry like methyl red and methylene blue, into ecosystems, leading to significant pollution of the water supply. Under UV-A irradiation, the photocatalytic degradation of a commercial heterocyclic aromatic chemical molecule called methylene blue (MB) has been investigated using an aqueous solution of Sr-Au-ZnO as a photocatalyst. Research has been done on how different process characteristics affect the degradation process. For the mineralization of MB dye under UV-A light, it was found that the optimized Sr-Au-ZnO was more effective than commercial catalysts (ZnO and benchmark photocatalyst Degussa P25), single metal dopants (Sr-ZnO, Au-ZnO), and prepared ZnO. The effects of operational parameters, such as the quantity of photocatalyst, dye concentration, and starting pH, on the photo-mineralization of MB are analyzed before optimal values are given. Chemical oxygen demand (COD) measurements have confirmed that MB is mineralized. Using GC–MS analysis, the intermediates produced during photodegradation were predicted, and an appropriate degradation pathway was suggested. This procedure can be used for treating wastewater from sewage since optimized Sr-Au-ZnO is reusable.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.