{"title":"∞类的戈尔斯-霍普金斯阻塞理论","authors":"Aaron Mazel-Gee","doi":"10.1016/j.aim.2024.109951","DOIUrl":null,"url":null,"abstract":"<div><p>Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109951"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goerss–Hopkins obstruction theory for ∞-categories\",\"authors\":\"Aaron Mazel-Gee\",\"doi\":\"10.1016/j.aim.2024.109951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109951\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004663\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004663","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Goerss–Hopkins obstruction theory for ∞-categories
Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.