∞类的戈尔斯-霍普金斯阻塞理论

IF 1.5 1区 数学 Q1 MATHEMATICS
Aaron Mazel-Gee
{"title":"∞类的戈尔斯-霍普金斯阻塞理论","authors":"Aaron Mazel-Gee","doi":"10.1016/j.aim.2024.109951","DOIUrl":null,"url":null,"abstract":"<div><p>Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109951"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goerss–Hopkins obstruction theory for ∞-categories\",\"authors\":\"Aaron Mazel-Gee\",\"doi\":\"10.1016/j.aim.2024.109951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109951\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004663\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004663","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

戈尔斯-霍普金斯阻塞理论是从纯代数数据构建结构化环谱的有力工具。利用模型∞范畴的形式主义,我们提供了一种适用于任意现对称单稳态∞范畴(如等变谱或动机谱范畴)的广义方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Goerss–Hopkins obstruction theory for ∞-categories

Goerss–Hopkins obstruction theory is a powerful tool for constructing structured ring spectra from purely algebraic data. Using the formalism of model ∞-categories, we provide a generalization that applies in an arbitrary presentably symmetric monoidal stable ∞-category (such as that of equivariant spectra or of motivic spectra).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信