加权各向异性等周不等式和奇异各向异性特鲁丁格-莫泽不等式的极值存在性

IF 1.5 1区 数学 Q1 MATHEMATICS
Guozhen Lu , Yansheng Shen , Jianwei Xue , Maochun Zhu
{"title":"加权各向异性等周不等式和奇异各向异性特鲁丁格-莫泽不等式的极值存在性","authors":"Guozhen Lu ,&nbsp;Yansheng Shen ,&nbsp;Jianwei Xue ,&nbsp;Maochun Zhu","doi":"10.1016/j.aim.2024.109949","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo>⁡</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>&lt;</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. <span><span>Theorem 1.1</span></span> is crucial in classifying the solutions to a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span>. (See <span><span>Theorem 4.1</span></span>.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See <span><span>Theorem 1.2</span></span>.)</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109949"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities\",\"authors\":\"Guozhen Lu ,&nbsp;Yansheng Shen ,&nbsp;Jianwei Xue ,&nbsp;Maochun Zhu\",\"doi\":\"10.1016/j.aim.2024.109949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo>⁡</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>&lt;</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. <span><span>Theorem 1.1</span></span> is crucial in classifying the solutions to a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span>. (See <span><span>Theorem 4.1</span></span>.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See <span><span>Theorem 1.2</span></span>.)</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109949\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082400464X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400464X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在 Rn 上建立了一类等周不等式,其权重是与芬斯勒度量相关的到原点距离的负幂次。(见定理 1.1。)基于这些加权各向异性等周不等式,我们可以划分出一类与 n-Finsler 拉普拉斯相关的奇异 Liouville 方程 (1. 10),并构造出一个吹胀序列。10),并构造一个吹胀序列来证明涉及各向异性狄利克特规范的奇异特鲁丁格-莫泽不等式的极值存在:supu∈W01,n(Ω),∫ΩF(∇u)ndx≤1∫Ωeλn,β|u|nn-1F∘(x)-βdx<∞ 对于任意 β∈(0,n),其中 Ω⊂Rn 是包含原点的光滑有界域,且 λn,β:=(n-βn)nnn-1κn1n-1。这里 F 是一个凸函数,它是阶数为 1 的偶次正均质函数,其极点 F∘ 表示 Rn 上的 Finsler 度量,κn 是单位 Wulff 球的 Lebesgue 度量。由于缺乏与权重函数适当的对称性原理,定理 1.1 中权重的存在增加了很大的困难。为此,我们采用了一种与芬斯勒度量相关的新型准共形映射来处理这个权重。定理 1.1 对于划分与 n-Finsler 拉普拉奇(1.10)相关的一类奇异 Liouville 方程的解至关重要。(见定理 4.1。)这一分类在建立奇异各向异性特鲁丁格-莫泽不等式的极值函数的存在性方面起着重要作用。(见定理 1.2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities

In this paper, we establish a class of isoperimetric inequalities on Rn with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See Theorem 1.1.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the n-Finsler-Laplacian (1.10) and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:supuW01,n(Ω),ΩF(u)ndx1Ωeλn,β|u|nn1F(x)βdx< for any β(0,n), where ΩRn is a smooth and bounded domain containing the origin, and λn,β:=(nβn)nnn1κn1n1. Here F is a convex function, which is even and positively homogeneous of degree 1, and its polar F represents a Finsler metric on Rn,κn is the Lebesgue measure of the unit Wulff ball.

The presence of the weight in Theorem 1.1 adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. Theorem 1.1 is crucial in classifying the solutions to a class of singular Liouville's equation associated with the n-Finsler-Laplacian (1.10). (See Theorem 4.1.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See Theorem 1.2.)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信