{"title":"加权各向异性等周不等式和奇异各向异性特鲁丁格-莫泽不等式的极值存在性","authors":"Guozhen Lu , Yansheng Shen , Jianwei Xue , Maochun Zhu","doi":"10.1016/j.aim.2024.109949","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. <span><span>Theorem 1.1</span></span> is crucial in classifying the solutions to a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span>. (See <span><span>Theorem 4.1</span></span>.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See <span><span>Theorem 1.2</span></span>.)</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109949"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities\",\"authors\":\"Guozhen Lu , Yansheng Shen , Jianwei Xue , Maochun Zhu\",\"doi\":\"10.1016/j.aim.2024.109949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish a class of isoperimetric inequalities on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See <span><span>Theorem 1.1</span></span>.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span> and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm:<span><span><span><math><munder><mi>sup</mi><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msup><mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>≤</mo><mn>1</mn></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo></math></span></span></span> for any <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a smooth and bounded domain containing the origin, and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>β</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></math></span>. Here <em>F</em> is a convex function, which is even and positively homogeneous of degree 1, and its polar <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∘</mo></mrow></msup></math></span> represents a Finsler metric on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Lebesgue measure of the unit Wulff ball.</p><p>The presence of the weight in <span><span>Theorem 1.1</span></span> adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. <span><span>Theorem 1.1</span></span> is crucial in classifying the solutions to a class of singular Liouville's equation associated with the <em>n</em>-Finsler-Laplacian <span><span>(1.10)</span></span>. (See <span><span>Theorem 4.1</span></span>.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See <span><span>Theorem 1.2</span></span>.)</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109949\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082400464X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400464X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted anisotropic isoperimetric inequalities and existence of extremals for singular anisotropic Trudinger-Moser inequalities
In this paper, we establish a class of isoperimetric inequalities on with respect to weights which are negative powers of the distance to the origin associated with the Finsler metric. (See Theorem 1.1.) Based on these weighted anisotropic isoperimetric inequalities, we can classify a class of singular Liouville's equation associated with the n-Finsler-Laplacian (1.10) and construct a blow-up sequence to show the existence of extremals for the singular Trudinger-Moser inequality involving the anisotropic Dirichlet norm: for any , where is a smooth and bounded domain containing the origin, and . Here F is a convex function, which is even and positively homogeneous of degree 1, and its polar represents a Finsler metric on is the Lebesgue measure of the unit Wulff ball.
The presence of the weight in Theorem 1.1 adds significant difficulties because of the lack of the appropriate symmetrization principle with the weight function. To this end, we perform a novel quasi-conformal type of map associated with the Finsler metric to deal with this weight. Theorem 1.1 is crucial in classifying the solutions to a class of singular Liouville's equation associated with the n-Finsler-Laplacian (1.10). (See Theorem 4.1.) This classification plays an important role in establishing the existence of extremal functions to the singular anisotropic Trudinger-Moser inequality. (See Theorem 1.2.)
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.