非共振双线性希尔伯特-卡列松算子

IF 1.5 1区 数学 Q1 MATHEMATICS
Cristina Benea , Frédéric Bernicot , Victor Lie , Marco Vitturi
{"title":"非共振双线性希尔伯特-卡列松算子","authors":"Cristina Benea ,&nbsp;Frédéric Bernicot ,&nbsp;Victor Lie ,&nbsp;Marco Vitturi","doi":"10.1016/j.aim.2024.109939","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce the class of bilinear Hilbert-Carleson operators <span><math><msub><mrow><mo>{</mo><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span> defined by<span><span><span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></munder><mo>⁡</mo><mo>|</mo><mo>∫</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>t</mi><mo>)</mo><mspace></mspace><mi>g</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>t</mi><mo>)</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msup><mspace></mspace><mfrac><mrow><mi>d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>|</mo></math></span></span></span> and show that in the non-resonant case <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∖</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> the operator <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> extends continuously from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> into <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> whenever <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><mo>∞</mo></math></span>.</p><p>A key novel feature of these operators is that – in the non-resonant case – <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> has a <em>hybrid</em> nature enjoying both</p><ul><li><span>(I)</span><span><p><em>zero curvature</em> features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and</p></span></li><li><span>(II)</span><span><p><em>non-zero curvature</em> features arising from the Carleson-type operator with nonlinear phase <span><math><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul> In order to simultaneously control these two competing facets of our operator we develop a <em>two-resolution approach</em>:<ul><li><span>•</span><span><p>A <em>low resolution, multi-scale analysis</em> addressing (I) and relying on the time-frequency discretization of <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> into suitable versions of “dilated” phase-space BHT-like portraits. The resulting decomposition will produce rank-one families of tri-tiles <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that the components of any such tri-tile will no longer have area one Heisenberg localization. The control over these families will be obtained via a refinement of the time-frequency methods introduced in <span><span>[35]</span></span> and <span><span>[36]</span></span>.</p></span></li><li><span>•</span><span><p>A <em>high resolution, single scale analysis</em> addressing (II) and relying on a further discretization of each of the tri-tiles <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> into a four-parameter family of tri-tiles <span><math><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> with each of the resulting tri-tiles <span><math><mi>s</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> now obeying the area one Heisenberg localization. The design of these latter families as well as the extraction of the cancellation encoded in the non-zero curvature of the multiplier's phase within each given <em>P</em> relies on the LGC-methodology introduced in <span><span>[41]</span></span>.</p></span></li></ul> A further interesting aspect of our work is that the high resolution analysis itself involves two types of decompositions capturing the local (single scale) behavior of our operator:<ul><li><span>•</span><span><p>A <em>continuous phase-linearized spatial model</em> that serves as the vehicle for extracting the cancellation from the multiplier's phase. The latter is achieved via <span><math><mi>T</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> arguments, number-theoretic tools (Weyl sums) and phase level set analysis exploiting time-frequency correlations.</p></span></li><li><span>•</span><span><p>A <em>discrete phase-linearized wave-packet model</em> that takes the just-captured phase cancellation and feeds it into the low resolution analysis in order to achieve the global control over <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul><p>As a consequence of the above, our proof offers a unifying perspective on the distinct methods for treating the zero/non-zero curvature paradigms.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109939"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The non-resonant bilinear Hilbert-Carleson operator\",\"authors\":\"Cristina Benea ,&nbsp;Frédéric Bernicot ,&nbsp;Victor Lie ,&nbsp;Marco Vitturi\",\"doi\":\"10.1016/j.aim.2024.109939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we introduce the class of bilinear Hilbert-Carleson operators <span><math><msub><mrow><mo>{</mo><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>}</mo></mrow><mrow><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span> defined by<span><span><span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></munder><mo>⁡</mo><mo>|</mo><mo>∫</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>t</mi><mo>)</mo><mspace></mspace><mi>g</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>t</mi><mo>)</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msup><mspace></mspace><mfrac><mrow><mi>d</mi><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>|</mo></math></span></span></span> and show that in the non-resonant case <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>∖</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> the operator <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> extends continuously from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> into <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> whenever <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>&lt;</mo><mi>r</mi><mo>&lt;</mo><mo>∞</mo></math></span>.</p><p>A key novel feature of these operators is that – in the non-resonant case – <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> has a <em>hybrid</em> nature enjoying both</p><ul><li><span>(I)</span><span><p><em>zero curvature</em> features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and</p></span></li><li><span>(II)</span><span><p><em>non-zero curvature</em> features arising from the Carleson-type operator with nonlinear phase <span><math><mi>λ</mi><msup><mrow><mi>t</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul> In order to simultaneously control these two competing facets of our operator we develop a <em>two-resolution approach</em>:<ul><li><span>•</span><span><p>A <em>low resolution, multi-scale analysis</em> addressing (I) and relying on the time-frequency discretization of <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> into suitable versions of “dilated” phase-space BHT-like portraits. The resulting decomposition will produce rank-one families of tri-tiles <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>m</mi></mrow></msub></math></span> such that the components of any such tri-tile will no longer have area one Heisenberg localization. The control over these families will be obtained via a refinement of the time-frequency methods introduced in <span><span>[35]</span></span> and <span><span>[36]</span></span>.</p></span></li><li><span>•</span><span><p>A <em>high resolution, single scale analysis</em> addressing (II) and relying on a further discretization of each of the tri-tiles <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> into a four-parameter family of tri-tiles <span><math><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> with each of the resulting tri-tiles <span><math><mi>s</mi><mo>∈</mo><mi>S</mi><mo>(</mo><mi>P</mi><mo>)</mo></math></span> now obeying the area one Heisenberg localization. The design of these latter families as well as the extraction of the cancellation encoded in the non-zero curvature of the multiplier's phase within each given <em>P</em> relies on the LGC-methodology introduced in <span><span>[41]</span></span>.</p></span></li></ul> A further interesting aspect of our work is that the high resolution analysis itself involves two types of decompositions capturing the local (single scale) behavior of our operator:<ul><li><span>•</span><span><p>A <em>continuous phase-linearized spatial model</em> that serves as the vehicle for extracting the cancellation from the multiplier's phase. The latter is achieved via <span><math><mi>T</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> arguments, number-theoretic tools (Weyl sums) and phase level set analysis exploiting time-frequency correlations.</p></span></li><li><span>•</span><span><p>A <em>discrete phase-linearized wave-packet model</em> that takes the just-captured phase cancellation and feeds it into the low resolution analysis in order to achieve the global control over <span><math><mi>B</mi><msup><mrow><mi>C</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>.</p></span></li></ul><p>As a consequence of the above, our proof offers a unifying perspective on the distinct methods for treating the zero/non-zero curvature paradigms.</p></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109939\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004547\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004547","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了双线性希尔伯特-卡莱森算子 {BCa}a>0 类,其定义为:BCa(f,g)(x):=supλ∈R|∫f(x-t)g(x+t)eiλtadtt|,并证明在非共振情况下 a∈(0,∞)∖{1,2},只要 1p+1q=1r 且 1<p,q≤∞ 和 23<r<∞,算子 BCa 就从 Lp(R)×Lq(R) 连续扩展到 Lr(R)。这些算子的一个关键新特征是--在非共振情况下--BCa 具有混合性质,同时享有(I)经典双线性希尔伯特变换(BHT)的调制不变性所继承的零曲率特征和(II)具有非线性相位 λta 的卡莱森型算子所产生的非零曲率特征。为了同时控制算子的这两个相互竞争的方面,我们开发了一种双分辨率方法:-针对(I)的低分辨率多尺度分析,依赖于将 BCa 的时频离散化为 "扩张的 "相空间 BHT 类肖像的合适版本。由此产生的分解将产生秩一的三方格{Pm}m族,使得任何此类三方格的分量不再具有区域一海森堡定位。对这些族的控制将通过[35]和[36]中介绍的时频方法的改进来实现。-针对(II)的高分辨率、单一尺度分析,依赖于将每个三面体 P∈Pm 进一步离散化为四参数的三面体 S(P)族,由此产生的每个三面体 s∈S(P) 现在都服从区域一海森堡定位。后面这些族的设计以及每个给定 P 内乘法器相位非零曲率中编码的消除提取,都依赖于 [41] 中介绍的 LGC 方法。我们工作的另一个有趣之处在于,高分辨率分析本身涉及两种类型的分解,以捕捉算子的局部(单一尺度)行为:-连续相位线性化空间模型,作为从乘法器相位中提取抵消的载体。后者通过 TT⁎参数、数论工具(Weyl 和)和利用时频相关性的相位水平集分析来实现。-离散相位线性化波包模型,采用刚刚捕获的相位抵消,并将其输入低分辨率分析,以实现对 BCa 的全局控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The non-resonant bilinear Hilbert-Carleson operator

In this paper we introduce the class of bilinear Hilbert-Carleson operators {BCa}a>0 defined byBCa(f,g)(x):=supλR|f(xt)g(x+t)eiλtadtt| and show that in the non-resonant case a(0,){1,2} the operator BCa extends continuously from Lp(R)×Lq(R) into Lr(R) whenever 1p+1q=1r with 1<p,q and 23<r<.

A key novel feature of these operators is that – in the non-resonant case – BCa has a hybrid nature enjoying both

  • (I)

    zero curvature features inherited from the modulation invariance property of the classical bilinear Hilbert transform (BHT), and

  • (II)

    non-zero curvature features arising from the Carleson-type operator with nonlinear phase λta.

In order to simultaneously control these two competing facets of our operator we develop a two-resolution approach:
  • A low resolution, multi-scale analysis addressing (I) and relying on the time-frequency discretization of BCa into suitable versions of “dilated” phase-space BHT-like portraits. The resulting decomposition will produce rank-one families of tri-tiles {Pm}m such that the components of any such tri-tile will no longer have area one Heisenberg localization. The control over these families will be obtained via a refinement of the time-frequency methods introduced in [35] and [36].

  • A high resolution, single scale analysis addressing (II) and relying on a further discretization of each of the tri-tiles PPm into a four-parameter family of tri-tiles S(P) with each of the resulting tri-tiles sS(P) now obeying the area one Heisenberg localization. The design of these latter families as well as the extraction of the cancellation encoded in the non-zero curvature of the multiplier's phase within each given P relies on the LGC-methodology introduced in [41].

A further interesting aspect of our work is that the high resolution analysis itself involves two types of decompositions capturing the local (single scale) behavior of our operator:
  • A continuous phase-linearized spatial model that serves as the vehicle for extracting the cancellation from the multiplier's phase. The latter is achieved via TT arguments, number-theoretic tools (Weyl sums) and phase level set analysis exploiting time-frequency correlations.

  • A discrete phase-linearized wave-packet model that takes the just-captured phase cancellation and feeds it into the low resolution analysis in order to achieve the global control over BCa.

As a consequence of the above, our proof offers a unifying perspective on the distinct methods for treating the zero/non-zero curvature paradigms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信