在材料挤压式三维打印中使用层高法制造功能表面

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"在材料挤压式三维打印中使用层高法制造功能表面","authors":"","doi":"10.1016/j.jmrt.2024.09.050","DOIUrl":null,"url":null,"abstract":"<div><p>Various layer stacking methods have been employed in material extrusion type three-dimensional (3D) printing to utilize their potential for addressing the inherent technological limitation of reduced surface quality due to layer stacking. The process involved fabricating a material extrusion type 3D printed mold using diverse layer height-changing methods and subsequently replicating the surface pattern with the polymer. This approach is called the layer height method (LHM) and comprises three distinct variations. The first method involves altering the height of the individual layers to generate diverse surface morphologies and, consequently, varying the range of water contact angles. The second method focuses on rapid layer height changes to facilitate liquid deposition within regions with low contact angles. Finally, a layer height gradient was systematically established within the mold, resulting in a wettability gradient surface capable of controlling the movement of water droplets across the surface. The performance of these functional surfaces was successfully validated using various experimental methods. This study introduces a manufacturing technique based on changing layer heights within the framework of material extrusion-type 3D printing technology. A wide range of intricate and diverse functional surfaces can be produced by extending the manufacturing method proposed in this study to 3D printing technologies beyond the scope of material extrusion type 3D printing.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020556/pdfft?md5=89b42d9940df6dc840a4bf902309a827&pid=1-s2.0-S2238785424020556-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of functional surfaces using layer height method in material extrusion type 3D printing\",\"authors\":\"\",\"doi\":\"10.1016/j.jmrt.2024.09.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various layer stacking methods have been employed in material extrusion type three-dimensional (3D) printing to utilize their potential for addressing the inherent technological limitation of reduced surface quality due to layer stacking. The process involved fabricating a material extrusion type 3D printed mold using diverse layer height-changing methods and subsequently replicating the surface pattern with the polymer. This approach is called the layer height method (LHM) and comprises three distinct variations. The first method involves altering the height of the individual layers to generate diverse surface morphologies and, consequently, varying the range of water contact angles. The second method focuses on rapid layer height changes to facilitate liquid deposition within regions with low contact angles. Finally, a layer height gradient was systematically established within the mold, resulting in a wettability gradient surface capable of controlling the movement of water droplets across the surface. The performance of these functional surfaces was successfully validated using various experimental methods. This study introduces a manufacturing technique based on changing layer heights within the framework of material extrusion-type 3D printing technology. A wide range of intricate and diverse functional surfaces can be produced by extending the manufacturing method proposed in this study to 3D printing technologies beyond the scope of material extrusion type 3D printing.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020556/pdfft?md5=89b42d9940df6dc840a4bf902309a827&pid=1-s2.0-S2238785424020556-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020556\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020556","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在材料挤压式三维(3D)打印中采用了各种层堆叠方法,以利用其潜力解决层堆叠导致表面质量下降的固有技术限制。这一过程包括使用不同的层高变化方法制造材料挤压型三维打印模具,然后用聚合物复制表面图案。这种方法被称为层高法(LHM),包括三种不同的变化。第一种方法是改变单个层的高度,以产生不同的表面形态,从而改变水接触角的范围。第二种方法侧重于快速改变层高,以促进液体在低接触角区域的沉积。最后,在模具内系统地建立层高梯度,从而形成可控制水滴在表面移动的润湿性梯度表面。使用各种实验方法成功验证了这些功能表面的性能。本研究介绍了在材料挤出型三维打印技术框架内基于层高变化的制造技术。通过将本研究提出的制造方法扩展到材料挤出型三维打印技术以外的三维打印技术,可以制造出各种复杂多样的功能表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of functional surfaces using layer height method in material extrusion type 3D printing

Various layer stacking methods have been employed in material extrusion type three-dimensional (3D) printing to utilize their potential for addressing the inherent technological limitation of reduced surface quality due to layer stacking. The process involved fabricating a material extrusion type 3D printed mold using diverse layer height-changing methods and subsequently replicating the surface pattern with the polymer. This approach is called the layer height method (LHM) and comprises three distinct variations. The first method involves altering the height of the individual layers to generate diverse surface morphologies and, consequently, varying the range of water contact angles. The second method focuses on rapid layer height changes to facilitate liquid deposition within regions with low contact angles. Finally, a layer height gradient was systematically established within the mold, resulting in a wettability gradient surface capable of controlling the movement of water droplets across the surface. The performance of these functional surfaces was successfully validated using various experimental methods. This study introduces a manufacturing technique based on changing layer heights within the framework of material extrusion-type 3D printing technology. A wide range of intricate and diverse functional surfaces can be produced by extending the manufacturing method proposed in this study to 3D printing technologies beyond the scope of material extrusion type 3D printing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信