异质粘度稳定流的迭代分裂方案

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"异质粘度稳定流的迭代分裂方案","authors":"","doi":"10.1016/j.cma.2024.117391","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a numerical scheme for the approximation of the solution of the Stokes or steady Navier–Stokes system for fluids with heterogeneous viscosity (generic bounded viscosity or shear thinning fluids). The scheme is based on a velocity–pressure splitting resembling a Uzawa approach combined with a grad-div stabilizing term. We establish the validity, convergence and a priori estimates for this strategy. A simpler mixed approach is also presented and studied. Numerical tests using a manufactured solution are provided, giving estimates for the accuracy order and sensitivity to the stabilizing coefficient. For more realistic numerical experiments, we present results for the lid-driven cavity.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524006467/pdfft?md5=572c1f4b18b1d6ad880264cbb0055f85&pid=1-s2.0-S0045782524006467-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An iterative split scheme for steady flows with heterogeneous viscosity\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a numerical scheme for the approximation of the solution of the Stokes or steady Navier–Stokes system for fluids with heterogeneous viscosity (generic bounded viscosity or shear thinning fluids). The scheme is based on a velocity–pressure splitting resembling a Uzawa approach combined with a grad-div stabilizing term. We establish the validity, convergence and a priori estimates for this strategy. A simpler mixed approach is also presented and studied. Numerical tests using a manufactured solution are provided, giving estimates for the accuracy order and sensitivity to the stabilizing coefficient. For more realistic numerical experiments, we present results for the lid-driven cavity.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006467/pdfft?md5=572c1f4b18b1d6ad880264cbb0055f85&pid=1-s2.0-S0045782524006467-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006467\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006467","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种数值方案,用于近似求解具有异质粘度的流体(一般有界粘度或剪切稀化流体)的斯托克斯或稳定纳维-斯托克斯系统。该方案基于类似乌泽方法的速度-压力分裂,并结合了梯度稳定项。我们确定了这一策略的有效性、收敛性和先验估计。我们还提出并研究了一种更简单的混合方法。我们提供了使用人造解法进行的数值测试,给出了精度阶次和对稳定系数敏感性的估计值。为了获得更真实的数值实验结果,我们给出了盖子驱动空腔的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative split scheme for steady flows with heterogeneous viscosity

This paper proposes a numerical scheme for the approximation of the solution of the Stokes or steady Navier–Stokes system for fluids with heterogeneous viscosity (generic bounded viscosity or shear thinning fluids). The scheme is based on a velocity–pressure splitting resembling a Uzawa approach combined with a grad-div stabilizing term. We establish the validity, convergence and a priori estimates for this strategy. A simpler mixed approach is also presented and studied. Numerical tests using a manufactured solution are provided, giving estimates for the accuracy order and sensitivity to the stabilizing coefficient. For more realistic numerical experiments, we present results for the lid-driven cavity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信