Damascene Nteziryayo , Zhenhua Wang , Ran An , Hongyan Qian , Gao Baoyao , Min Liang , Zijun Liu , Xingyao Chen , Xinshe Liu , Tao Li
{"title":"利用 ATR-FTIR 分光仪分析死前和死后损伤中与衰变相关的光谱变化的法医学意义","authors":"Damascene Nteziryayo , Zhenhua Wang , Ran An , Hongyan Qian , Gao Baoyao , Min Liang , Zijun Liu , Xingyao Chen , Xinshe Liu , Tao Li","doi":"10.1016/j.vibspec.2024.103740","DOIUrl":null,"url":null,"abstract":"<div><p>Every year, more than 5 million deaths are attributed to injuries worldwide. However, accurately identifying and distinguishing the types of injuries in decomposed corpses is a significant challenge in forensic identification. Determining the cause of death in cases involving decomposed cadavers is particularly difficult, because traditional methods often lack conclusive evidence. To address this gap, this study aimed to explore the potential of attenuated total reflection/Fourier-transform infrared (ATR-FTIR) spectroscopy in analyzing the molecular composition changes in tissue samples from putrefied corpses. To simulate different environmental conditions, 54 experimental mice were randomly divided into three groups: ante-mortem injury (AI), post-mortem injury (PI), and non-injury (NI) groups, and their bodies were monitored at different time points. Subsequently, we conducted comprehensive analyses of these tissue samples using ATR-FTIR. The results indicate that under winter conditions, PC1 explained 78.3 % of the variance, whereas PC2 explained 15.4 %. Similarly, under summer conditions, PC1 explained 75.3 % of the variance, whereas PC2 explained 16.1 %. The results under both conditions, the AUC values of the ROC curve exceeded 0.9, indicating the reliability and accuracy of this method in discriminating ante-mortem injuries from post-mortem injuries on decomposed bodies, highlighting its significance in forensic investigations. This demonstrates the capability of ATR-FTIR technology to identify distinct molecular changes linked to ante-mortem and post-mortem injuries in decomposed corpses. The findings of this study underscores the forensic significance of understanding the molecular composition changes in decomposed cadavers. Therefore, ATR-FTIR is a valuable tool for differentiating ante-mortem and post-mortem injuries while also considering environmental factors.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"135 ","pages":"Article 103740"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forensic significance of decay-related spectral changes in ante-mortem and post-mortem injuries using ATR-FTIR spectroscopy\",\"authors\":\"Damascene Nteziryayo , Zhenhua Wang , Ran An , Hongyan Qian , Gao Baoyao , Min Liang , Zijun Liu , Xingyao Chen , Xinshe Liu , Tao Li\",\"doi\":\"10.1016/j.vibspec.2024.103740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Every year, more than 5 million deaths are attributed to injuries worldwide. However, accurately identifying and distinguishing the types of injuries in decomposed corpses is a significant challenge in forensic identification. Determining the cause of death in cases involving decomposed cadavers is particularly difficult, because traditional methods often lack conclusive evidence. To address this gap, this study aimed to explore the potential of attenuated total reflection/Fourier-transform infrared (ATR-FTIR) spectroscopy in analyzing the molecular composition changes in tissue samples from putrefied corpses. To simulate different environmental conditions, 54 experimental mice were randomly divided into three groups: ante-mortem injury (AI), post-mortem injury (PI), and non-injury (NI) groups, and their bodies were monitored at different time points. Subsequently, we conducted comprehensive analyses of these tissue samples using ATR-FTIR. The results indicate that under winter conditions, PC1 explained 78.3 % of the variance, whereas PC2 explained 15.4 %. Similarly, under summer conditions, PC1 explained 75.3 % of the variance, whereas PC2 explained 16.1 %. The results under both conditions, the AUC values of the ROC curve exceeded 0.9, indicating the reliability and accuracy of this method in discriminating ante-mortem injuries from post-mortem injuries on decomposed bodies, highlighting its significance in forensic investigations. This demonstrates the capability of ATR-FTIR technology to identify distinct molecular changes linked to ante-mortem and post-mortem injuries in decomposed corpses. The findings of this study underscores the forensic significance of understanding the molecular composition changes in decomposed cadavers. Therefore, ATR-FTIR is a valuable tool for differentiating ante-mortem and post-mortem injuries while also considering environmental factors.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"135 \",\"pages\":\"Article 103740\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203124000936\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000936","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Forensic significance of decay-related spectral changes in ante-mortem and post-mortem injuries using ATR-FTIR spectroscopy
Every year, more than 5 million deaths are attributed to injuries worldwide. However, accurately identifying and distinguishing the types of injuries in decomposed corpses is a significant challenge in forensic identification. Determining the cause of death in cases involving decomposed cadavers is particularly difficult, because traditional methods often lack conclusive evidence. To address this gap, this study aimed to explore the potential of attenuated total reflection/Fourier-transform infrared (ATR-FTIR) spectroscopy in analyzing the molecular composition changes in tissue samples from putrefied corpses. To simulate different environmental conditions, 54 experimental mice were randomly divided into three groups: ante-mortem injury (AI), post-mortem injury (PI), and non-injury (NI) groups, and their bodies were monitored at different time points. Subsequently, we conducted comprehensive analyses of these tissue samples using ATR-FTIR. The results indicate that under winter conditions, PC1 explained 78.3 % of the variance, whereas PC2 explained 15.4 %. Similarly, under summer conditions, PC1 explained 75.3 % of the variance, whereas PC2 explained 16.1 %. The results under both conditions, the AUC values of the ROC curve exceeded 0.9, indicating the reliability and accuracy of this method in discriminating ante-mortem injuries from post-mortem injuries on decomposed bodies, highlighting its significance in forensic investigations. This demonstrates the capability of ATR-FTIR technology to identify distinct molecular changes linked to ante-mortem and post-mortem injuries in decomposed corpses. The findings of this study underscores the forensic significance of understanding the molecular composition changes in decomposed cadavers. Therefore, ATR-FTIR is a valuable tool for differentiating ante-mortem and post-mortem injuries while also considering environmental factors.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.