{"title":"用再生碳纤维加固的软粘土中的电渗固结和电阻率演变特征","authors":"Guanyu Chen , Lingwei Zheng , Xunli Zhang , Guoqiang Wu , Cheng Feng , Xudong Zheng , Xinyu Xie","doi":"10.1016/j.geotexmem.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study repurposed discarded carbon fiber fabric by mechanically cutting it into short-cut carbon fibers and utilized these fibers in electro-osmosis experiments with varying lengths (5 mm, 10 mm, and 15 mm) and mixing ratios (0.05%, 0.10%, and 0.25%). The results indicated that increasing the length and mixing ratio of recycled carbon fibers effectively reduced the soil resistivity. Furthermore, incorporating an appropriate amount of carbon fibers not only reduced the energy consumption coefficient but also enhanced the electro-osmotic drainage performance. Increasing the length and mixing ratio of carbon fiber also improved the vane shear strength after electro-osmosis consolidation. To promote the application of carbon fiber in electro-osmosis consolidation and to provide support for the development of electro-osmosis consolidation theory and numerical analysis, a resistivity calculation model of carbon fiber-reinforced soil during the electro-osmosis process was developed based on the Ohm's Law and tunneling transmission theory. The model elucidates that during the electro-osmosis process, soil resistivity is influenced by the increase in barrier thickness, which consequently raises the tunneling transmission resistance.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 96-105"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of electro-osmosis consolidation and resistivity evolution in soft clay reinforced with recycled carbon fibers\",\"authors\":\"Guanyu Chen , Lingwei Zheng , Xunli Zhang , Guoqiang Wu , Cheng Feng , Xudong Zheng , Xinyu Xie\",\"doi\":\"10.1016/j.geotexmem.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study repurposed discarded carbon fiber fabric by mechanically cutting it into short-cut carbon fibers and utilized these fibers in electro-osmosis experiments with varying lengths (5 mm, 10 mm, and 15 mm) and mixing ratios (0.05%, 0.10%, and 0.25%). The results indicated that increasing the length and mixing ratio of recycled carbon fibers effectively reduced the soil resistivity. Furthermore, incorporating an appropriate amount of carbon fibers not only reduced the energy consumption coefficient but also enhanced the electro-osmotic drainage performance. Increasing the length and mixing ratio of carbon fiber also improved the vane shear strength after electro-osmosis consolidation. To promote the application of carbon fiber in electro-osmosis consolidation and to provide support for the development of electro-osmosis consolidation theory and numerical analysis, a resistivity calculation model of carbon fiber-reinforced soil during the electro-osmosis process was developed based on the Ohm's Law and tunneling transmission theory. The model elucidates that during the electro-osmosis process, soil resistivity is influenced by the increase in barrier thickness, which consequently raises the tunneling transmission resistance.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 96-105\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001080\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001080","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Characteristics of electro-osmosis consolidation and resistivity evolution in soft clay reinforced with recycled carbon fibers
This study repurposed discarded carbon fiber fabric by mechanically cutting it into short-cut carbon fibers and utilized these fibers in electro-osmosis experiments with varying lengths (5 mm, 10 mm, and 15 mm) and mixing ratios (0.05%, 0.10%, and 0.25%). The results indicated that increasing the length and mixing ratio of recycled carbon fibers effectively reduced the soil resistivity. Furthermore, incorporating an appropriate amount of carbon fibers not only reduced the energy consumption coefficient but also enhanced the electro-osmotic drainage performance. Increasing the length and mixing ratio of carbon fiber also improved the vane shear strength after electro-osmosis consolidation. To promote the application of carbon fiber in electro-osmosis consolidation and to provide support for the development of electro-osmosis consolidation theory and numerical analysis, a resistivity calculation model of carbon fiber-reinforced soil during the electro-osmosis process was developed based on the Ohm's Law and tunneling transmission theory. The model elucidates that during the electro-osmosis process, soil resistivity is influenced by the increase in barrier thickness, which consequently raises the tunneling transmission resistance.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.