{"title":"通过一步碳热还原-碳化法合成碳化钨纳米粉体","authors":"Kuokuo Bao, Yunzhu Ma, Bolin Zhang, Wensheng Liu","doi":"10.1016/j.jmrt.2024.09.107","DOIUrl":null,"url":null,"abstract":"<div><p>Tungsten carbide (WC) nanopowder is crucial for preparing high-performance WC-Co cemented carbides, but the synthesis of WC nanopowder still remains huge challenges. In this study, we report a novel method for synthesizing high-purity WC nanopowder by carbothermal reduction-carbonization. The effects of the reaction atmosphere, temperature, and time on the morphology and size of WC powder were studied. It was found that vacuum atmosphere was more conducive to prepare WC nanopowder, which could reduce the onset temperature of carbothermal reduction reaction and effectively improve the reaction efficiency. The final products in vacuum were more homogeneous and smaller compared with argon atmosphere. Furthermore, the mechanism of effect of atmosphere on prepared WC nanopowder was analyzed in detail. The particle size of WC showed an increasing trend with the increase of temperature and holding time. Following calcination at 1100 °C for 5 h, the as-prepared WC nanopowder attained an average particle size of 82 nm.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 884-891"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021124/pdfft?md5=72be1f79c1eed945d158f2bb70aa416c&pid=1-s2.0-S2238785424021124-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of tungsten carbide nanopowder by a one-step carbothermal reduction-carbonization method\",\"authors\":\"Kuokuo Bao, Yunzhu Ma, Bolin Zhang, Wensheng Liu\",\"doi\":\"10.1016/j.jmrt.2024.09.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tungsten carbide (WC) nanopowder is crucial for preparing high-performance WC-Co cemented carbides, but the synthesis of WC nanopowder still remains huge challenges. In this study, we report a novel method for synthesizing high-purity WC nanopowder by carbothermal reduction-carbonization. The effects of the reaction atmosphere, temperature, and time on the morphology and size of WC powder were studied. It was found that vacuum atmosphere was more conducive to prepare WC nanopowder, which could reduce the onset temperature of carbothermal reduction reaction and effectively improve the reaction efficiency. The final products in vacuum were more homogeneous and smaller compared with argon atmosphere. Furthermore, the mechanism of effect of atmosphere on prepared WC nanopowder was analyzed in detail. The particle size of WC showed an increasing trend with the increase of temperature and holding time. Following calcination at 1100 °C for 5 h, the as-prepared WC nanopowder attained an average particle size of 82 nm.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 884-891\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021124/pdfft?md5=72be1f79c1eed945d158f2bb70aa416c&pid=1-s2.0-S2238785424021124-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021124\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021124","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
纳米碳化钨(WC)粉末是制备高性能 WC-Co 硬质合金的关键,但纳米碳化钨粉末的合成仍面临巨大挑战。在本研究中,我们报告了一种通过碳热还原-碳化法合成高纯度碳化钨纳米粉体的新方法。研究了反应气氛、温度和时间对碳化钨粉末形貌和尺寸的影响。研究发现,真空气氛更有利于制备碳化钨纳米粉体,可以降低碳化还原反应的起始温度,有效提高反应效率。与氩气环境相比,真空环境下的最终产物更均匀,体积更小。此外,还详细分析了气氛对制备的碳化钨纳米粉体的影响机理。随着温度和保温时间的增加,碳化钨的粒度呈上升趋势。在 1100 °C 煅烧 5 小时后,制备的碳化钨纳米粉体的平均粒径达到 82 nm。
Synthesis of tungsten carbide nanopowder by a one-step carbothermal reduction-carbonization method
Tungsten carbide (WC) nanopowder is crucial for preparing high-performance WC-Co cemented carbides, but the synthesis of WC nanopowder still remains huge challenges. In this study, we report a novel method for synthesizing high-purity WC nanopowder by carbothermal reduction-carbonization. The effects of the reaction atmosphere, temperature, and time on the morphology and size of WC powder were studied. It was found that vacuum atmosphere was more conducive to prepare WC nanopowder, which could reduce the onset temperature of carbothermal reduction reaction and effectively improve the reaction efficiency. The final products in vacuum were more homogeneous and smaller compared with argon atmosphere. Furthermore, the mechanism of effect of atmosphere on prepared WC nanopowder was analyzed in detail. The particle size of WC showed an increasing trend with the increase of temperature and holding time. Following calcination at 1100 °C for 5 h, the as-prepared WC nanopowder attained an average particle size of 82 nm.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.