在等熵铬钴镍中熵合金中,相变介导了晶粒尺寸和位错密度的双重异质性

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kun Jiang , Jianguo Li , Xi Chen , Bin Gan , Qingbo Dou , Tao Suo
{"title":"在等熵铬钴镍中熵合金中,相变介导了晶粒尺寸和位错密度的双重异质性","authors":"Kun Jiang ,&nbsp;Jianguo Li ,&nbsp;Xi Chen ,&nbsp;Bin Gan ,&nbsp;Qingbo Dou ,&nbsp;Tao Suo","doi":"10.1016/j.jmrt.2024.09.080","DOIUrl":null,"url":null,"abstract":"<div><p>An ultra-high strain rate (10<sup>4</sup> s<sup>−1</sup>) dynamic plastic deformation treatment at liquid nitrogen temperature (LNT-DPD) followed by annealing is carried out to obtain dual heterogeneity of grain size and dislocation density in an equiatomic CrCoNi medium entropy alloy (MEA). Such extreme loading conditions resulted in extensive phase transformation in this MEA. Subsequent annealing at 650 °C for 1 h further induced reverse phase transformation and partial recrystallization, forming a complex heterogeneous microstructure characterized by nested trimodal grain sizes and partitioned dislocation density. A superior yield strength of ∼800 MPa and a good ductility of ∼40% were simultaneously achieved in this heterogeneous alloy. In order to reveal the effects of grain size and dislocation density distributions on the mechanical property improvements, the underlying deformation mechanisms were systematically discussed. High density of geometrically necessary dislocations (GNDs) would be induced in complex heterogeneous structures during tensile deformation due to strain gradients or partitioning between different regions, which would lead to additional strengthening and work hardening. These results provide a novel approach to overcome the strength-ductility trade-off dilemma for FCC-structured MEAs.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 471-479"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020842/pdfft?md5=c1b777811653e66a6c84b73f4b336854&pid=1-s2.0-S2238785424020842-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phase reversion mediated the dual heterogeneity of grain size and dislocation density in an equiatomic CrCoNi medium-entropy alloy\",\"authors\":\"Kun Jiang ,&nbsp;Jianguo Li ,&nbsp;Xi Chen ,&nbsp;Bin Gan ,&nbsp;Qingbo Dou ,&nbsp;Tao Suo\",\"doi\":\"10.1016/j.jmrt.2024.09.080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An ultra-high strain rate (10<sup>4</sup> s<sup>−1</sup>) dynamic plastic deformation treatment at liquid nitrogen temperature (LNT-DPD) followed by annealing is carried out to obtain dual heterogeneity of grain size and dislocation density in an equiatomic CrCoNi medium entropy alloy (MEA). Such extreme loading conditions resulted in extensive phase transformation in this MEA. Subsequent annealing at 650 °C for 1 h further induced reverse phase transformation and partial recrystallization, forming a complex heterogeneous microstructure characterized by nested trimodal grain sizes and partitioned dislocation density. A superior yield strength of ∼800 MPa and a good ductility of ∼40% were simultaneously achieved in this heterogeneous alloy. In order to reveal the effects of grain size and dislocation density distributions on the mechanical property improvements, the underlying deformation mechanisms were systematically discussed. High density of geometrically necessary dislocations (GNDs) would be induced in complex heterogeneous structures during tensile deformation due to strain gradients or partitioning between different regions, which would lead to additional strengthening and work hardening. These results provide a novel approach to overcome the strength-ductility trade-off dilemma for FCC-structured MEAs.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 471-479\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020842/pdfft?md5=c1b777811653e66a6c84b73f4b336854&pid=1-s2.0-S2238785424020842-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020842\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在液氮温度下进行超高应变速率(104 s-1)动态塑性变形处理(LNT-DPD),然后进行退火,以获得等原子铬钴镍中熵合金(MEA)中晶粒尺寸和位错密度的双重异质性。这种极端加载条件导致这种中熵合金发生了广泛的相变。随后在 650 °C 下退火 1 小时,进一步诱导了反向相变和部分再结晶,形成了复杂的异质微观结构,其特点是嵌套的三odal 晶粒尺寸和分割的位错密度。这种异质合金的屈服强度高达 800 兆帕,延展性高达 40%。为了揭示晶粒尺寸和位错密度分布对机械性能改善的影响,系统地讨论了其基本变形机制。在拉伸变形过程中,由于应变梯度或不同区域之间的分割,复杂的异质结构中会诱发高密度的几何必要位错(GND),这将导致额外的强化和加工硬化。这些结果为克服 FCC 结构 MEA 的强度-电导率权衡难题提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase reversion mediated the dual heterogeneity of grain size and dislocation density in an equiatomic CrCoNi medium-entropy alloy

An ultra-high strain rate (104 s−1) dynamic plastic deformation treatment at liquid nitrogen temperature (LNT-DPD) followed by annealing is carried out to obtain dual heterogeneity of grain size and dislocation density in an equiatomic CrCoNi medium entropy alloy (MEA). Such extreme loading conditions resulted in extensive phase transformation in this MEA. Subsequent annealing at 650 °C for 1 h further induced reverse phase transformation and partial recrystallization, forming a complex heterogeneous microstructure characterized by nested trimodal grain sizes and partitioned dislocation density. A superior yield strength of ∼800 MPa and a good ductility of ∼40% were simultaneously achieved in this heterogeneous alloy. In order to reveal the effects of grain size and dislocation density distributions on the mechanical property improvements, the underlying deformation mechanisms were systematically discussed. High density of geometrically necessary dislocations (GNDs) would be induced in complex heterogeneous structures during tensile deformation due to strain gradients or partitioning between different regions, which would lead to additional strengthening and work hardening. These results provide a novel approach to overcome the strength-ductility trade-off dilemma for FCC-structured MEAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信