Chuanyao Dong , Ruiyan Li , Jia Wang , Tao Zhou , Jingjie Pan , Jingsan Xu , Mao Wen , Yanguo Qin , Kan Zhang
{"title":"用于关节置换植入物的地形硬保护涂层","authors":"Chuanyao Dong , Ruiyan Li , Jia Wang , Tao Zhou , Jingjie Pan , Jingsan Xu , Mao Wen , Yanguo Qin , Kan Zhang","doi":"10.1016/j.jmrt.2024.09.139","DOIUrl":null,"url":null,"abstract":"<div><p>Joint replacement surgery, essential for managing joint diseases, requires improvements in tribocorrosion performance to ensure surgical success and longevity of joint implants. Transition-metal light-element (TMLE) compound coatings, known for their high hardness and chemical stability, have been extensively researched and applied for surface protection of joint implants. However, these coatings typically lack a lubrication phase, leading to high friction coefficients and severe corrosion wear, which makes long-term effective protection challenging. A promising approach is to utilize the natural lubricating proteins present in body fluids, which are continuously available and can thus address long-term service issues of TMLE coatings. In this work, we utilized micro-arc oxidation (MAO) technology to develop an underlying morphology, then conformally deposited a TiB<sub>2</sub> layer, resulting in a cratered dual-layer TiB<sub>2</sub>/MAO coating. This unique cratered dual-layer structure not only preserves the high hardness and wear resistance of TiB<sub>2</sub> but also aims to (1) absorb wear particles to prevent abrasive wear and (2) increase surface energy to optimize protein lubrication capacity. Consequently, the TiB<sub>2</sub>/MAO coating exhibits low friction coefficients and wear rates in protein-containing simulated body fluids. Furthermore, the dual-layer TiB<sub>2</sub>/MAO coating demonstrates excellent corrosion resistance and biocompatibility. This dual-layer coating design synergistically combines the superior intrinsic properties of material with unique structural construction, while also harnessing continuously available external proteins as lubricants to further optimize performance, thereby introducing an advanced strategy for developing protective coatings for implant materials.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 861-873"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021446/pdfft?md5=2253a07960cefa33f7bfe9f3fb86ac7d&pid=1-s2.0-S2238785424021446-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Topographical hard protective coating for joint replacement implants\",\"authors\":\"Chuanyao Dong , Ruiyan Li , Jia Wang , Tao Zhou , Jingjie Pan , Jingsan Xu , Mao Wen , Yanguo Qin , Kan Zhang\",\"doi\":\"10.1016/j.jmrt.2024.09.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Joint replacement surgery, essential for managing joint diseases, requires improvements in tribocorrosion performance to ensure surgical success and longevity of joint implants. Transition-metal light-element (TMLE) compound coatings, known for their high hardness and chemical stability, have been extensively researched and applied for surface protection of joint implants. However, these coatings typically lack a lubrication phase, leading to high friction coefficients and severe corrosion wear, which makes long-term effective protection challenging. A promising approach is to utilize the natural lubricating proteins present in body fluids, which are continuously available and can thus address long-term service issues of TMLE coatings. In this work, we utilized micro-arc oxidation (MAO) technology to develop an underlying morphology, then conformally deposited a TiB<sub>2</sub> layer, resulting in a cratered dual-layer TiB<sub>2</sub>/MAO coating. This unique cratered dual-layer structure not only preserves the high hardness and wear resistance of TiB<sub>2</sub> but also aims to (1) absorb wear particles to prevent abrasive wear and (2) increase surface energy to optimize protein lubrication capacity. Consequently, the TiB<sub>2</sub>/MAO coating exhibits low friction coefficients and wear rates in protein-containing simulated body fluids. Furthermore, the dual-layer TiB<sub>2</sub>/MAO coating demonstrates excellent corrosion resistance and biocompatibility. This dual-layer coating design synergistically combines the superior intrinsic properties of material with unique structural construction, while also harnessing continuously available external proteins as lubricants to further optimize performance, thereby introducing an advanced strategy for developing protective coatings for implant materials.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 861-873\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021446/pdfft?md5=2253a07960cefa33f7bfe9f3fb86ac7d&pid=1-s2.0-S2238785424021446-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021446\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021446","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topographical hard protective coating for joint replacement implants
Joint replacement surgery, essential for managing joint diseases, requires improvements in tribocorrosion performance to ensure surgical success and longevity of joint implants. Transition-metal light-element (TMLE) compound coatings, known for their high hardness and chemical stability, have been extensively researched and applied for surface protection of joint implants. However, these coatings typically lack a lubrication phase, leading to high friction coefficients and severe corrosion wear, which makes long-term effective protection challenging. A promising approach is to utilize the natural lubricating proteins present in body fluids, which are continuously available and can thus address long-term service issues of TMLE coatings. In this work, we utilized micro-arc oxidation (MAO) technology to develop an underlying morphology, then conformally deposited a TiB2 layer, resulting in a cratered dual-layer TiB2/MAO coating. This unique cratered dual-layer structure not only preserves the high hardness and wear resistance of TiB2 but also aims to (1) absorb wear particles to prevent abrasive wear and (2) increase surface energy to optimize protein lubrication capacity. Consequently, the TiB2/MAO coating exhibits low friction coefficients and wear rates in protein-containing simulated body fluids. Furthermore, the dual-layer TiB2/MAO coating demonstrates excellent corrosion resistance and biocompatibility. This dual-layer coating design synergistically combines the superior intrinsic properties of material with unique structural construction, while also harnessing continuously available external proteins as lubricants to further optimize performance, thereby introducing an advanced strategy for developing protective coatings for implant materials.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.