{"title":"森林破碎化和森林植被动态:贾坎德邦西辛格布姆地区采矿引发的变化","authors":"Md Saharik Joy, Priyanka Jha, Pawan Kumar Yadav, Taruna Bansal, Pankaj Rawat, Shehnaz Begam","doi":"10.1016/j.rsase.2024.101350","DOIUrl":null,"url":null,"abstract":"<div><p>Forests play a crucial role in the global climate system by acting as important carbon storage sinks and controlling the flow of carbon between land and the atmosphere. They provide a wide range of ecosystem services, including the supply of resources and biodiversity conservation. Deforestation is a significant issue leading to the release of carbon dioxide and greenhouse gases. The destruction and fragmentation of existing habitats pose significant threats to biodiversity. This study examined land use/land cover (LULC) alterations in the West Singhbhum district between 1987 and 2021, specifically emphasizing the influence of mining operations on the local forest ecosystem. This study used Landsat satellite imagery to examine data from 1987 to 2021, emphasizing five primary classifications: water body, mining area, built-up areas, open/cropland, and forest/vegetation. The maps were reclassified into two categories, namely, “No-Forest\" and “Forest. Forest fragmentation maps were created using Landscape Fragmentation Tool (LFT) v2.0. A regression analysis was conducted to ascertain the correlation between mining growth and the reduction in forest cover. The analysis revealed increased mining areas, developed buildings, and cultivated land accompanied by a decline in forested areas and vegetation. There were substantial changes in land use, with mining areas expanding by 31.14 km<sup>2</sup> and open/cropland increasing by 30.39 km<sup>2</sup>. The conversion of forested areas into agricultural zones and mining regions resulted in a 1.08% reduction in forest coverage.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101350"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forest fragmentation and forest cover dynamics: Mining induced changes in the West Singhbhum District of Jharkhand\",\"authors\":\"Md Saharik Joy, Priyanka Jha, Pawan Kumar Yadav, Taruna Bansal, Pankaj Rawat, Shehnaz Begam\",\"doi\":\"10.1016/j.rsase.2024.101350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forests play a crucial role in the global climate system by acting as important carbon storage sinks and controlling the flow of carbon between land and the atmosphere. They provide a wide range of ecosystem services, including the supply of resources and biodiversity conservation. Deforestation is a significant issue leading to the release of carbon dioxide and greenhouse gases. The destruction and fragmentation of existing habitats pose significant threats to biodiversity. This study examined land use/land cover (LULC) alterations in the West Singhbhum district between 1987 and 2021, specifically emphasizing the influence of mining operations on the local forest ecosystem. This study used Landsat satellite imagery to examine data from 1987 to 2021, emphasizing five primary classifications: water body, mining area, built-up areas, open/cropland, and forest/vegetation. The maps were reclassified into two categories, namely, “No-Forest\\\" and “Forest. Forest fragmentation maps were created using Landscape Fragmentation Tool (LFT) v2.0. A regression analysis was conducted to ascertain the correlation between mining growth and the reduction in forest cover. The analysis revealed increased mining areas, developed buildings, and cultivated land accompanied by a decline in forested areas and vegetation. There were substantial changes in land use, with mining areas expanding by 31.14 km<sup>2</sup> and open/cropland increasing by 30.39 km<sup>2</sup>. The conversion of forested areas into agricultural zones and mining regions resulted in a 1.08% reduction in forest coverage.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101350\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Forest fragmentation and forest cover dynamics: Mining induced changes in the West Singhbhum District of Jharkhand
Forests play a crucial role in the global climate system by acting as important carbon storage sinks and controlling the flow of carbon between land and the atmosphere. They provide a wide range of ecosystem services, including the supply of resources and biodiversity conservation. Deforestation is a significant issue leading to the release of carbon dioxide and greenhouse gases. The destruction and fragmentation of existing habitats pose significant threats to biodiversity. This study examined land use/land cover (LULC) alterations in the West Singhbhum district between 1987 and 2021, specifically emphasizing the influence of mining operations on the local forest ecosystem. This study used Landsat satellite imagery to examine data from 1987 to 2021, emphasizing five primary classifications: water body, mining area, built-up areas, open/cropland, and forest/vegetation. The maps were reclassified into two categories, namely, “No-Forest" and “Forest. Forest fragmentation maps were created using Landscape Fragmentation Tool (LFT) v2.0. A regression analysis was conducted to ascertain the correlation between mining growth and the reduction in forest cover. The analysis revealed increased mining areas, developed buildings, and cultivated land accompanied by a decline in forested areas and vegetation. There were substantial changes in land use, with mining areas expanding by 31.14 km2 and open/cropland increasing by 30.39 km2. The conversion of forested areas into agricultural zones and mining regions resulted in a 1.08% reduction in forest coverage.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems