用于人类小梁网细胞灌注培养和青光眼研究的三维打印明胶甲基丙烯酰水凝胶

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bikram Adhikari, Prasanga Barakoti, Mina B. Pantcheva, Melissa D. Krebs
{"title":"用于人类小梁网细胞灌注培养和青光眼研究的三维打印明胶甲基丙烯酰水凝胶","authors":"Bikram Adhikari, Prasanga Barakoti, Mina B. Pantcheva, Melissa D. Krebs","doi":"10.1002/bit.28849","DOIUrl":null,"url":null,"abstract":"Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies\",\"authors\":\"Bikram Adhikari, Prasanga Barakoti, Mina B. Pantcheva, Melissa D. Krebs\",\"doi\":\"10.1002/bit.28849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.28849\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28849","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是一种渐进性眼病,会导致不可逆转的失明,目前全球有 7000 多万人患有青光眼。眼压升高与青光眼的发病有关。眼压受小梁网(TM)的严格调节。然而,对小梁啮合行为的研究一直局限于传统的组织培养研究或昂贵的动物和供体眼球体外培养。开发新型功能性小梁网模型可以加深对细胞/组织行为的理解,有助于青光眼的治疗开发。在这项研究中,我们用三维打印技术打印了一个简化的、可重复的人类 TM(hTM)模型,并研究了 hTM 细胞在静态和动态培养下的行为。事实证明,明胶甲基丙烯酰生物链接适合打印有活力和增殖的 hTM 细胞,这些细胞在糖皮质激素诱导下表达重要的标记基因。据我们所知,这是首个功能性三维打印 hTM 模型,旨在促进 TM 研究。此外,这种易于复制的模型还可用于研究全身其他多种细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies

3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies
Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信