从第一原理出发,在螺芴-二硫环戊烷基空穴传输材料中为高效有机和包光体太阳能电池定制多样化的外围锚基

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Rida Fatima, Nabeel Shahzad, Tahreem Fatima, Sonia Perveen, Ashraf M. M. Abdelbacki, Kai Wang, Javed Iqbal
{"title":"从第一原理出发,在螺芴-二硫环戊烷基空穴传输材料中为高效有机和包光体太阳能电池定制多样化的外围锚基","authors":"Rida Fatima, Nabeel Shahzad, Tahreem Fatima, Sonia Perveen, Ashraf M. M. Abdelbacki, Kai Wang, Javed Iqbal","doi":"10.1002/adts.202400773","DOIUrl":null,"url":null,"abstract":"This quantum mechanical approach recommends push–pull molecular engineering to fabricate hole‐transporting materials (HTMs) for photovoltaic cells. It integrates acceptor moieties via thiophene to fluorene core, resulting in five novel HTMs (SFD‐1 to SFD‐5). The results exhibit that derivative HTMs show excellent coherence in excitation, dispersion, and transportation of charge carriers, ensuring robust hole mobility. The anchor moieties functionalized HTMs unveil excellent band alignment with perovskite with fitting HOMO energy levels (−4.93–−5.35 eV), less optical absorption in visible portion ( &lt; 520). This acceptor integration has improved the hole mobility in derivatives, accredited to the smaller hole reorganization energy (0.14–0.68 eV), and greater hole transfer integral (0.22–0.33 eV). The transition density matrix analysis exhibited robust electronic coupling, subtler charge carrier overlapping and greater charge transfer length (7.48–13.73 Å). This resulted in an excellent upsurge in intrinsic charge transference (70.75–92.70%) and smaller exciton binding energy, leading to easier exciton dissociation, and fewer recombination fatalities. However, an adequate variation in dipole moment (4.04 D to 16.34 D) and Gibbs solvation‐free energy (−18.06 to −21.89 kcal mol<jats:sup>−1</jats:sup>) ensures facile film formation and processability. In conclusion, this approach recommends these flourene‐based HTMs are highly desireable for forthcoming solar cell technology.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Diversified Peripheral Anchor Groups in Spirofluorene‐Dithiolane‐Based Hole Transporting Materials for Efficient Organic and Perovskite Solar Cells from First‐Principle\",\"authors\":\"Rida Fatima, Nabeel Shahzad, Tahreem Fatima, Sonia Perveen, Ashraf M. M. Abdelbacki, Kai Wang, Javed Iqbal\",\"doi\":\"10.1002/adts.202400773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This quantum mechanical approach recommends push–pull molecular engineering to fabricate hole‐transporting materials (HTMs) for photovoltaic cells. It integrates acceptor moieties via thiophene to fluorene core, resulting in five novel HTMs (SFD‐1 to SFD‐5). The results exhibit that derivative HTMs show excellent coherence in excitation, dispersion, and transportation of charge carriers, ensuring robust hole mobility. The anchor moieties functionalized HTMs unveil excellent band alignment with perovskite with fitting HOMO energy levels (−4.93–−5.35 eV), less optical absorption in visible portion ( &lt; 520). This acceptor integration has improved the hole mobility in derivatives, accredited to the smaller hole reorganization energy (0.14–0.68 eV), and greater hole transfer integral (0.22–0.33 eV). The transition density matrix analysis exhibited robust electronic coupling, subtler charge carrier overlapping and greater charge transfer length (7.48–13.73 Å). This resulted in an excellent upsurge in intrinsic charge transference (70.75–92.70%) and smaller exciton binding energy, leading to easier exciton dissociation, and fewer recombination fatalities. However, an adequate variation in dipole moment (4.04 D to 16.34 D) and Gibbs solvation‐free energy (−18.06 to −21.89 kcal mol<jats:sup>−1</jats:sup>) ensures facile film formation and processability. In conclusion, this approach recommends these flourene‐based HTMs are highly desireable for forthcoming solar cell technology.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202400773\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400773","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这种量子力学方法建议采用推拉式分子工程来制造用于光伏电池的空穴传输材料(HTMs)。它通过噻吩将受体分子整合到芴核心,从而产生了五种新型 HTM(SFD-1 至 SFD-5)。研究结果表明,衍生 HTM 在电荷载流子的激发、分散和传输方面表现出极佳的一致性,确保了空穴的稳健迁移。锚基团官能化的 HTMs 与包晶具有良好的能带一致性,其 HOMO 能级(-4.93-5.35 eV)与包晶相匹配,在可见光部分(< 520)的光吸收较少。由于空穴重组能(0.14-0.68 eV)和空穴转移积分(0.22-0.33 eV)较小,这种受体集成提高了衍生物中的空穴迁移率。过渡密度矩阵分析表明,衍生物具有强大的电子耦合、更微妙的电荷载流子重叠和更大的电荷转移长度(7.48-13.73 Å)。这使得本征电荷转移量大幅增加(70.75-92.70%),激子结合能更小,从而使激子解离更容易,重组致死率更低。然而,偶极矩(4.04 D 至 16.34 D)和无吉布斯溶解能(-18.06 至 -21.89 kcal mol-1)的充分变化确保了薄膜的形成和加工的简便性。总之,这种方法推荐这些基于氟烯的 HTMs 非常适用于未来的太阳能电池技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Diversified Peripheral Anchor Groups in Spirofluorene‐Dithiolane‐Based Hole Transporting Materials for Efficient Organic and Perovskite Solar Cells from First‐Principle
This quantum mechanical approach recommends push–pull molecular engineering to fabricate hole‐transporting materials (HTMs) for photovoltaic cells. It integrates acceptor moieties via thiophene to fluorene core, resulting in five novel HTMs (SFD‐1 to SFD‐5). The results exhibit that derivative HTMs show excellent coherence in excitation, dispersion, and transportation of charge carriers, ensuring robust hole mobility. The anchor moieties functionalized HTMs unveil excellent band alignment with perovskite with fitting HOMO energy levels (−4.93–−5.35 eV), less optical absorption in visible portion ( < 520). This acceptor integration has improved the hole mobility in derivatives, accredited to the smaller hole reorganization energy (0.14–0.68 eV), and greater hole transfer integral (0.22–0.33 eV). The transition density matrix analysis exhibited robust electronic coupling, subtler charge carrier overlapping and greater charge transfer length (7.48–13.73 Å). This resulted in an excellent upsurge in intrinsic charge transference (70.75–92.70%) and smaller exciton binding energy, leading to easier exciton dissociation, and fewer recombination fatalities. However, an adequate variation in dipole moment (4.04 D to 16.34 D) and Gibbs solvation‐free energy (−18.06 to −21.89 kcal mol−1) ensures facile film formation and processability. In conclusion, this approach recommends these flourene‐based HTMs are highly desireable for forthcoming solar cell technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信