{"title":"面向算术的 APN 排列","authors":"Lilya Budaghyan, Mohit Pal","doi":"10.1007/s10623-024-01487-7","DOIUrl":null,"url":null,"abstract":"<p>Recently, many cryptographic primitives such as homomorphic encryption (HE), multi-party computation (MPC) and zero-knowledge (ZK) protocols have been proposed in the literature which operate on the prime field <span>\\({\\mathbb {F}}_p\\)</span> for some large prime <i>p</i>. Primitives that are designed using such operations are called <i>arithmetization-oriented</i> primitives. As the concept of arithmetization-oriented primitives is new, a rigorous cryptanalysis of such primitives is yet to be done. In this paper, we investigate arithmetization-oriented APN functions. More precisely, we investigate APN permutations in the CCZ-classes of known families of APN power functions over the prime field <span>\\({\\mathbb {F}}_p\\)</span>. Moreover, we present a class of binomial permutation having differential uniformity at most 5 defined via the quadratic character over finite fields of odd characteristic. Computationally it is confirmed that the latter family contains new APN permutations for some small parameters. We conjecture it to contain an infinite subfamily of APN permutations.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"33 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetization-oriented APN permutations\",\"authors\":\"Lilya Budaghyan, Mohit Pal\",\"doi\":\"10.1007/s10623-024-01487-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, many cryptographic primitives such as homomorphic encryption (HE), multi-party computation (MPC) and zero-knowledge (ZK) protocols have been proposed in the literature which operate on the prime field <span>\\\\({\\\\mathbb {F}}_p\\\\)</span> for some large prime <i>p</i>. Primitives that are designed using such operations are called <i>arithmetization-oriented</i> primitives. As the concept of arithmetization-oriented primitives is new, a rigorous cryptanalysis of such primitives is yet to be done. In this paper, we investigate arithmetization-oriented APN functions. More precisely, we investigate APN permutations in the CCZ-classes of known families of APN power functions over the prime field <span>\\\\({\\\\mathbb {F}}_p\\\\)</span>. Moreover, we present a class of binomial permutation having differential uniformity at most 5 defined via the quadratic character over finite fields of odd characteristic. Computationally it is confirmed that the latter family contains new APN permutations for some small parameters. We conjecture it to contain an infinite subfamily of APN permutations.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01487-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01487-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Recently, many cryptographic primitives such as homomorphic encryption (HE), multi-party computation (MPC) and zero-knowledge (ZK) protocols have been proposed in the literature which operate on the prime field \({\mathbb {F}}_p\) for some large prime p. Primitives that are designed using such operations are called arithmetization-oriented primitives. As the concept of arithmetization-oriented primitives is new, a rigorous cryptanalysis of such primitives is yet to be done. In this paper, we investigate arithmetization-oriented APN functions. More precisely, we investigate APN permutations in the CCZ-classes of known families of APN power functions over the prime field \({\mathbb {F}}_p\). Moreover, we present a class of binomial permutation having differential uniformity at most 5 defined via the quadratic character over finite fields of odd characteristic. Computationally it is confirmed that the latter family contains new APN permutations for some small parameters. We conjecture it to contain an infinite subfamily of APN permutations.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.