使用二氧化钒的超高耐久硅光子存储器

Juan José Seoane, Jorge Parra, Juan Navarro-Arenas, María Recaman, Koen Schouteden, Jean Pierre Locquet, Pablo Sanchis
{"title":"使用二氧化钒的超高耐久硅光子存储器","authors":"Juan José Seoane, Jorge Parra, Juan Navarro-Arenas, María Recaman, Koen Schouteden, Jean Pierre Locquet, Pablo Sanchis","doi":"10.1038/s44310-024-00038-1","DOIUrl":null,"url":null,"abstract":"Silicon photonics arises as a viable solution to address the stringent resource demands of emergent technologies, such as neural networks. Within this framework, photonic memories are fundamental building blocks of photonic integrated circuits that have not yet found a standardized solution due to several trade-offs among different metrics such as energy consumption, speed, footprint, or fabrication complexity, to name a few. In particular, a photonic memory exhibiting ultra-high endurance performance (>106 cycles) has been elusive to date. Here, we report an ultra-high endurance silicon photonic volatile memory using vanadium dioxide (VO2) exhibiting a record cyclability of up to 107 cycles without degradation. Moreover, our memory features an ultra-compact footprint below 5 µm with the potential for nanosecond and picojoule programming performance. Our silicon photonic memory could find application in emerging photonic applications demanding a high number of memory updates, such as photonic neural networks with in situ training.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00038-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultra-high endurance silicon photonic memory using vanadium dioxide\",\"authors\":\"Juan José Seoane, Jorge Parra, Juan Navarro-Arenas, María Recaman, Koen Schouteden, Jean Pierre Locquet, Pablo Sanchis\",\"doi\":\"10.1038/s44310-024-00038-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon photonics arises as a viable solution to address the stringent resource demands of emergent technologies, such as neural networks. Within this framework, photonic memories are fundamental building blocks of photonic integrated circuits that have not yet found a standardized solution due to several trade-offs among different metrics such as energy consumption, speed, footprint, or fabrication complexity, to name a few. In particular, a photonic memory exhibiting ultra-high endurance performance (>106 cycles) has been elusive to date. Here, we report an ultra-high endurance silicon photonic volatile memory using vanadium dioxide (VO2) exhibiting a record cyclability of up to 107 cycles without degradation. Moreover, our memory features an ultra-compact footprint below 5 µm with the potential for nanosecond and picojoule programming performance. Our silicon photonic memory could find application in emerging photonic applications demanding a high number of memory updates, such as photonic neural networks with in situ training.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00038-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00038-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00038-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为满足神经网络等新兴技术对资源的严格需求,硅光子技术成为一种可行的解决方案。在这一框架内,光子存储器是光子集成电路的基本构件,但由于不同指标(如能耗、速度、占地面积或制造复杂性等)之间的权衡,尚未找到标准化的解决方案。特别是,具有超高耐久性能(106 个周期)的光子存储器至今仍未问世。在这里,我们报告了一种使用二氧化钒(VO2)的超高耐用性硅光子易失性存储器,它具有高达 107 次循环而不衰减的创纪录循环能力。此外,我们的存储器还具有低于 5 微米的超紧凑尺寸,可实现纳秒级和皮焦级编程性能。我们的硅光子存储器可应用于需要大量存储器更新的新兴光子应用领域,如具有现场训练功能的光子神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-high endurance silicon photonic memory using vanadium dioxide

Ultra-high endurance silicon photonic memory using vanadium dioxide
Silicon photonics arises as a viable solution to address the stringent resource demands of emergent technologies, such as neural networks. Within this framework, photonic memories are fundamental building blocks of photonic integrated circuits that have not yet found a standardized solution due to several trade-offs among different metrics such as energy consumption, speed, footprint, or fabrication complexity, to name a few. In particular, a photonic memory exhibiting ultra-high endurance performance (>106 cycles) has been elusive to date. Here, we report an ultra-high endurance silicon photonic volatile memory using vanadium dioxide (VO2) exhibiting a record cyclability of up to 107 cycles without degradation. Moreover, our memory features an ultra-compact footprint below 5 µm with the potential for nanosecond and picojoule programming performance. Our silicon photonic memory could find application in emerging photonic applications demanding a high number of memory updates, such as photonic neural networks with in situ training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信