Jochen Sieg, Christian W. Feldmann, Jennifer Hemmerich, Conrad Stork, Frederik Sandfort, Philipp Eiden, Miriam Mathea
{"title":"MolPipeline:在 Scikit-learn 中使用 RDKit 处理分子的 Python 软件包","authors":"Jochen Sieg, Christian W. Feldmann, Jennifer Hemmerich, Conrad Stork, Frederik Sandfort, Philipp Eiden, Miriam Mathea","doi":"10.1021/acs.jcim.4c00863","DOIUrl":null,"url":null,"abstract":"The open-source package scikit-learn provides various machine learning algorithms and data processing tools, including the Pipeline class, which allows users to prepend custom data transformation steps to the machine learning model. We introduce the MolPipeline package, which extends this concept to cheminformatics by wrapping standard RDKit functionality, such as reading and writing SMILES strings or calculating molecular descriptors from a molecule object. We aimed to build an easy-to-use Python package to create completely automated end-to-end pipelines that scale to large data sets. Particular emphasis was put on handling erroneous instances, where resolution would require manual intervention in default pipelines. MolPipeline provides the building blocks to enable seamless integration of common cheminformatics tasks within scikit-learn’s pipeline framework, such as scaffold splits and molecular standardization, making pipeline building easily adaptable to diverse project requirements.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MolPipeline: A Python Package for Processing Molecules with RDKit in Scikit-learn\",\"authors\":\"Jochen Sieg, Christian W. Feldmann, Jennifer Hemmerich, Conrad Stork, Frederik Sandfort, Philipp Eiden, Miriam Mathea\",\"doi\":\"10.1021/acs.jcim.4c00863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The open-source package scikit-learn provides various machine learning algorithms and data processing tools, including the Pipeline class, which allows users to prepend custom data transformation steps to the machine learning model. We introduce the MolPipeline package, which extends this concept to cheminformatics by wrapping standard RDKit functionality, such as reading and writing SMILES strings or calculating molecular descriptors from a molecule object. We aimed to build an easy-to-use Python package to create completely automated end-to-end pipelines that scale to large data sets. Particular emphasis was put on handling erroneous instances, where resolution would require manual intervention in default pipelines. MolPipeline provides the building blocks to enable seamless integration of common cheminformatics tasks within scikit-learn’s pipeline framework, such as scaffold splits and molecular standardization, making pipeline building easily adaptable to diverse project requirements.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c00863\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00863","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
MolPipeline: A Python Package for Processing Molecules with RDKit in Scikit-learn
The open-source package scikit-learn provides various machine learning algorithms and data processing tools, including the Pipeline class, which allows users to prepend custom data transformation steps to the machine learning model. We introduce the MolPipeline package, which extends this concept to cheminformatics by wrapping standard RDKit functionality, such as reading and writing SMILES strings or calculating molecular descriptors from a molecule object. We aimed to build an easy-to-use Python package to create completely automated end-to-end pipelines that scale to large data sets. Particular emphasis was put on handling erroneous instances, where resolution would require manual intervention in default pipelines. MolPipeline provides the building blocks to enable seamless integration of common cheminformatics tasks within scikit-learn’s pipeline framework, such as scaffold splits and molecular standardization, making pipeline building easily adaptable to diverse project requirements.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.