Jozefien D’haeseleer, Ferdinand Ihringer, Kai-Uwe Schmidt
{"title":"极地空间中的超立方体分区和卵形体的通用概括","authors":"Jozefien D’haeseleer, Ferdinand Ihringer, Kai-Uwe Schmidt","doi":"10.1007/s10623-024-01489-5","DOIUrl":null,"url":null,"abstract":"<p>We investigate what we call generalized ovoids, that is families of totally isotropic subspaces of finite classical polar spaces such that each maximal totally isotropic subspace contains precisely one member of that family. This is a generalization of ovoids in polar spaces as well as the natural <i>q</i>-analog of a subcube partition of the hypercube (which can be seen as a polar space with <span>\\(q=1\\)</span>). Our main result proves that a generalized ovoid of <i>k</i>-spaces in polar spaces of large rank does not exist.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"63 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A common generalization of hypercube partitions and ovoids in polar spaces\",\"authors\":\"Jozefien D’haeseleer, Ferdinand Ihringer, Kai-Uwe Schmidt\",\"doi\":\"10.1007/s10623-024-01489-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate what we call generalized ovoids, that is families of totally isotropic subspaces of finite classical polar spaces such that each maximal totally isotropic subspace contains precisely one member of that family. This is a generalization of ovoids in polar spaces as well as the natural <i>q</i>-analog of a subcube partition of the hypercube (which can be seen as a polar space with <span>\\\\(q=1\\\\)</span>). Our main result proves that a generalized ovoid of <i>k</i>-spaces in polar spaces of large rank does not exist.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01489-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01489-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A common generalization of hypercube partitions and ovoids in polar spaces
We investigate what we call generalized ovoids, that is families of totally isotropic subspaces of finite classical polar spaces such that each maximal totally isotropic subspace contains precisely one member of that family. This is a generalization of ovoids in polar spaces as well as the natural q-analog of a subcube partition of the hypercube (which can be seen as a polar space with \(q=1\)). Our main result proves that a generalized ovoid of k-spaces in polar spaces of large rank does not exist.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.