Michael Kiermaier, Kai-Uwe Schmidt, Alfred Wassermann
{"title":"有限经典极空间中的设计","authors":"Michael Kiermaier, Kai-Uwe Schmidt, Alfred Wassermann","doi":"10.1007/s10623-024-01491-x","DOIUrl":null,"url":null,"abstract":"<p>Combinatorial designs have been studied for nearly 200 years. 50 years ago, Cameron, Delsarte, and Ray-Chaudhury started investigating their <i>q</i>-analogs, also known as subspace designs or designs over finite fields. Designs can be defined analogously in finite classical polar spaces, too. The definition includes the <i>m</i>-regular systems from projective geometry as the special case where the blocks are generators of the polar space. The first nontrivial such designs for <span>\\(t > 1\\)</span> were found by De Bruyn and Vanhove in 2012, and some more designs appeared recently in the PhD thesis of Lansdown. In this article, we investigate the theory of classical and subspace designs for applicability to designs in polar spaces, explicitly allowing arbitrary block dimensions. In this way, we obtain divisibility conditions on the parameters, derived and residual designs, intersection numbers and an analog of Fisher’s inequality. We classify the parameters of symmetric designs. Furthermore, we conduct a computer search to construct designs of strength <span>\\(t=2\\)</span>, resulting in designs for more than 140 previously unknown parameter sets in various classical polar spaces over <span>\\(\\mathbb {F}_2\\)</span> and <span>\\(\\mathbb {F}_3\\)</span>.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"328 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designs in finite classical polar spaces\",\"authors\":\"Michael Kiermaier, Kai-Uwe Schmidt, Alfred Wassermann\",\"doi\":\"10.1007/s10623-024-01491-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Combinatorial designs have been studied for nearly 200 years. 50 years ago, Cameron, Delsarte, and Ray-Chaudhury started investigating their <i>q</i>-analogs, also known as subspace designs or designs over finite fields. Designs can be defined analogously in finite classical polar spaces, too. The definition includes the <i>m</i>-regular systems from projective geometry as the special case where the blocks are generators of the polar space. The first nontrivial such designs for <span>\\\\(t > 1\\\\)</span> were found by De Bruyn and Vanhove in 2012, and some more designs appeared recently in the PhD thesis of Lansdown. In this article, we investigate the theory of classical and subspace designs for applicability to designs in polar spaces, explicitly allowing arbitrary block dimensions. In this way, we obtain divisibility conditions on the parameters, derived and residual designs, intersection numbers and an analog of Fisher’s inequality. We classify the parameters of symmetric designs. Furthermore, we conduct a computer search to construct designs of strength <span>\\\\(t=2\\\\)</span>, resulting in designs for more than 140 previously unknown parameter sets in various classical polar spaces over <span>\\\\(\\\\mathbb {F}_2\\\\)</span> and <span>\\\\(\\\\mathbb {F}_3\\\\)</span>.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"328 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01491-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01491-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Combinatorial designs have been studied for nearly 200 years. 50 years ago, Cameron, Delsarte, and Ray-Chaudhury started investigating their q-analogs, also known as subspace designs or designs over finite fields. Designs can be defined analogously in finite classical polar spaces, too. The definition includes the m-regular systems from projective geometry as the special case where the blocks are generators of the polar space. The first nontrivial such designs for \(t > 1\) were found by De Bruyn and Vanhove in 2012, and some more designs appeared recently in the PhD thesis of Lansdown. In this article, we investigate the theory of classical and subspace designs for applicability to designs in polar spaces, explicitly allowing arbitrary block dimensions. In this way, we obtain divisibility conditions on the parameters, derived and residual designs, intersection numbers and an analog of Fisher’s inequality. We classify the parameters of symmetric designs. Furthermore, we conduct a computer search to construct designs of strength \(t=2\), resulting in designs for more than 140 previously unknown parameter sets in various classical polar spaces over \(\mathbb {F}_2\) and \(\mathbb {F}_3\).
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.