可积分模型中局部算子的矩阵元素统计

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
F. H. L. Essler, A. J. J. M. de Klerk
{"title":"可积分模型中局部算子的矩阵元素统计","authors":"F. H. L. Essler, A. J. J. M. de Klerk","doi":"10.1103/physrevx.14.031048","DOIUrl":null,"url":null,"abstract":"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><mi mathvariant=\"bold-italic\">μ</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"script\">O</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"bold-italic\">λ</mi><mo stretchy=\"false\">⟩</mo></math> in the same macrostate scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>exp</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msubsup><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math>, where the probability distribution function for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>M</mi><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mi mathvariant=\"script\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>c</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>exp</mi><mo stretchy=\"false\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistics of Matrix Elements of Local Operators in Integrable Models\",\"authors\":\"F. H. L. Essler, A. J. J. M. de Klerk\",\"doi\":\"10.1103/physrevx.14.031048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">⟨</mo><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo stretchy=\\\"false\\\">|</mo><mi mathvariant=\\\"script\\\">O</mi><mo stretchy=\\\"false\\\">|</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi><mo stretchy=\\\"false\\\">⟩</mo></math> in the same macrostate scale as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>exp</mi><mo mathvariant=\\\"bold\\\" stretchy=\\\"false\\\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo>,</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi></mrow><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow></msubsup><mo mathvariant=\\\"bold\\\" stretchy=\\\"false\\\">)</mo></mrow></math>, where the probability distribution function for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>M</mi><mrow><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo>,</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi></mrow><mi mathvariant=\\\"script\\\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>c</mi><mi mathvariant=\\\"script\\\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>exp</mi><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\\\"script\\\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\\\"false\\\">)</mo></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>d</mi><mi mathvariant=\\\"script\\\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031048\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031048","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个典型的、可积分的多粒子量子理论--具有排斥性三角函数相互作用的玻色子的利布-利尼格模型--中的能量特征状态基础上的局部算子矩阵元素的统计。利用量子可积分性方法,我们确定了矩阵元素随系统规模的缩放。由于存在大量的守恒定律,矩阵元素的结构与一般模型的特征态热化假说的预测有着本质的区别,而且更为复杂。我们发现了相互作用可积分模型中局部算子的这种结构与自由理论中与基本激元无关的局部算子的这种结构之间的有趣联系。我们发现,典型的非对角矩阵元素⟨μ|O|λ⟩在同一宏观状态尺度上与exp(-cOLln(L)-LMμ,λO)相同,其中Mμ,λO的概率分布函数由弗雷谢特分布很好地描述,而cO只取决于宏观状态信息。相反,两个不同宏观状态之间的典型非对角矩阵元素的规模为 exp(-dOL2),其中 dO 仅取决于宏观状态信息。对角线矩阵元素只取决于宏观状态信息,直至有限尺寸修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Statistics of Matrix Elements of Local Operators in Integrable Models

Statistics of Matrix Elements of Local Operators in Integrable Models
We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements μ|O|λ in the same macrostate scale as exp(cOLln(L)LMμ,λO), where the probability distribution function for Mμ,λO is well described by Fréchet distributions and cO depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as exp(dOL2), where dO depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信