{"title":"可积分模型中局部算子的矩阵元素统计","authors":"F. H. L. Essler, A. J. J. M. de Klerk","doi":"10.1103/physrevx.14.031048","DOIUrl":null,"url":null,"abstract":"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">⟨</mo><mi mathvariant=\"bold-italic\">μ</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"script\">O</mi><mo stretchy=\"false\">|</mo><mi mathvariant=\"bold-italic\">λ</mi><mo stretchy=\"false\">⟩</mo></math> in the same macrostate scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>exp</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mrow><mi mathvariant=\"script\">O</mi></mrow></msubsup><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math>, where the probability distribution function for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>M</mi><mrow><mi mathvariant=\"bold-italic\">μ</mi><mo>,</mo><mi mathvariant=\"bold-italic\">λ</mi></mrow><mi mathvariant=\"script\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>c</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>exp</mi><mo stretchy=\"false\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>d</mi><mi mathvariant=\"script\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistics of Matrix Elements of Local Operators in Integrable Models\",\"authors\":\"F. H. L. Essler, A. J. J. M. de Klerk\",\"doi\":\"10.1103/physrevx.14.031048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">⟨</mo><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo stretchy=\\\"false\\\">|</mo><mi mathvariant=\\\"script\\\">O</mi><mo stretchy=\\\"false\\\">|</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi><mo stretchy=\\\"false\\\">⟩</mo></math> in the same macrostate scale as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>exp</mi><mo mathvariant=\\\"bold\\\" stretchy=\\\"false\\\">(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow></msup><mi>L</mi><mi>ln</mi><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo><mo>−</mo><mi>L</mi><msubsup><mrow><mi>M</mi></mrow><mrow><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo>,</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi></mrow><mrow><mi mathvariant=\\\"script\\\">O</mi></mrow></msubsup><mo mathvariant=\\\"bold\\\" stretchy=\\\"false\\\">)</mo></mrow></math>, where the probability distribution function for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>M</mi><mrow><mi mathvariant=\\\"bold-italic\\\">μ</mi><mo>,</mo><mi mathvariant=\\\"bold-italic\\\">λ</mi></mrow><mi mathvariant=\\\"script\\\">O</mi></msubsup></math> is well described by Fréchet distributions and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>c</mi><mi mathvariant=\\\"script\\\">O</mi></msup></math> depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>exp</mi><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msup><mi>d</mi><mi mathvariant=\\\"script\\\">O</mi></msup><msup><mi>L</mi><mn>2</mn></msup><mo stretchy=\\\"false\\\">)</mo></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>d</mi><mi mathvariant=\\\"script\\\">O</mi></msup></math> depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.031048\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031048","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一个典型的、可积分的多粒子量子理论--具有排斥性三角函数相互作用的玻色子的利布-利尼格模型--中的能量特征状态基础上的局部算子矩阵元素的统计。利用量子可积分性方法,我们确定了矩阵元素随系统规模的缩放。由于存在大量的守恒定律,矩阵元素的结构与一般模型的特征态热化假说的预测有着本质的区别,而且更为复杂。我们发现了相互作用可积分模型中局部算子的这种结构与自由理论中与基本激元无关的局部算子的这种结构之间的有趣联系。我们发现,典型的非对角矩阵元素⟨μ|O|λ⟩在同一宏观状态尺度上与exp(-cOLln(L)-LMμ,λO)相同,其中Mμ,λO的概率分布函数由弗雷谢特分布很好地描述,而cO只取决于宏观状态信息。相反,两个不同宏观状态之间的典型非对角矩阵元素的规模为 exp(-dOL2),其中 dO 仅取决于宏观状态信息。对角线矩阵元素只取决于宏观状态信息,直至有限尺寸修正。
Statistics of Matrix Elements of Local Operators in Integrable Models
We study the statistics of matrix elements of local operators in the basis of energy eigenstates in a paradigmatic, integrable, many-particle quantum theory, the Lieb-Liniger model of bosons with repulsive delta-function interactions. Using methods of quantum integrability, we determine the scaling of matrix elements with system size. As a consequence of the extensive number of conservation laws, the structure of matrix elements is fundamentally different from, and much more intricate than, the predictions of the eigenstate thermalization hypothesis for generic models. We uncover an interesting connection between this structure for local operators in interacting integrable models and the one for local operators that are not local with respect to the elementary excitations in free theories. We find that typical off-diagonal matrix elements in the same macrostate scale as , where the probability distribution function for is well described by Fréchet distributions and depends only on macrostate information. In contrast, typical off-diagonal matrix elements between two different macrostates scale as , where depends only on macrostate information. Diagonal matrix elements depend only on macrostate information up to finite-size corrections.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.