Amin Boumenir, Khaled M. Furati, Ibrahim O. Sarumi
{"title":"重构带源的分数演化方程","authors":"Amin Boumenir, Khaled M. Furati, Ibrahim O. Sarumi","doi":"10.1007/s13540-024-00337-6","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the inverse problem of reconstructing a fractional evolution equation with a source. To this end we use observations of the solution on the boundary to reconstruct the principal part of the operator and the fractional order of the time derivative, while an overdetermination at a time <i>T</i> is used to recover the source by a non iterative method. Numerical examples explain how to compute the fractional order and the source using finite data.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of a fractional evolution equation with a source\",\"authors\":\"Amin Boumenir, Khaled M. Furati, Ibrahim O. Sarumi\",\"doi\":\"10.1007/s13540-024-00337-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are concerned with the inverse problem of reconstructing a fractional evolution equation with a source. To this end we use observations of the solution on the boundary to reconstruct the principal part of the operator and the fractional order of the time derivative, while an overdetermination at a time <i>T</i> is used to recover the source by a non iterative method. Numerical examples explain how to compute the fractional order and the source using finite data.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00337-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00337-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们关注的是重建有源分式演化方程的逆问题。为此,我们利用对边界解的观测来重构算子的主部和时间导数的分数阶,同时利用时间 T 的超确定性来通过非迭代法恢复源。数值示例解释了如何利用有限数据计算分数阶和源。
Reconstruction of a fractional evolution equation with a source
We are concerned with the inverse problem of reconstructing a fractional evolution equation with a source. To this end we use observations of the solution on the boundary to reconstruct the principal part of the operator and the fractional order of the time derivative, while an overdetermination at a time T is used to recover the source by a non iterative method. Numerical examples explain how to compute the fractional order and the source using finite data.