Splam:基于深度学习的剪接位点预测器,可改进剪接排列

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kuan-Hao Chao, Alan Mao, Steven L. Salzberg, Mihaela Pertea
{"title":"Splam:基于深度学习的剪接位点预测器,可改进剪接排列","authors":"Kuan-Hao Chao, Alan Mao, Steven L. Salzberg, Mihaela Pertea","doi":"10.1186/s13059-024-03379-4","DOIUrl":null,"url":null,"abstract":"The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splam: a deep-learning-based splice site predictor that improves spliced alignments\",\"authors\":\"Kuan-Hao Chao, Alan Mao, Steven L. Salzberg, Mihaela Pertea\",\"doi\":\"10.1186/s13059-024-03379-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03379-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03379-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

剪接信使 RNA 以去除内含子的过程在创建基因和基因变体中起着核心作用。我们介绍的 Splam 是一种利用深度残差卷积神经网络预测 DNA 中剪接接头的新方法。与之前的模型不同,Splam 观察的是每个剪接位点侧翼的 400 碱基对窗口,反映了主要依赖该窗口内信号的生物剪接过程。Splam 还同时对供体和受体对进行训练,以反映剪接机器如何识别每个内含子的两端。与 SpliceAI 相比,Splam 的准确率一直较高,预测人类剪接接头的准确率达到 96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splam: a deep-learning-based splice site predictor that improves spliced alignments
The process of splicing messenger RNA to remove introns plays a central role in creating genes and gene variants. We describe Splam, a novel method for predicting splice junctions in DNA using deep residual convolutional neural networks. Unlike previous models, Splam looks at a 400-base-pair window flanking each splice site, reflecting the biological splicing process that relies primarily on signals within this window. Splam also trains on donor and acceptor pairs together, mirroring how the splicing machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is consistently more accurate, achieving 96% accuracy in predicting human splice junctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信