ESCHR:在不同数据集上进行稳健聚类的超参数随机集合方法

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sarah M. Goggin, Eli R. Zunder
{"title":"ESCHR:在不同数据集上进行稳健聚类的超参数随机集合方法","authors":"Sarah M. Goggin, Eli R. Zunder","doi":"10.1186/s13059-024-03386-5","DOIUrl":null,"url":null,"abstract":"Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets\",\"authors\":\"Sarah M. Goggin, Eli R. Zunder\",\"doi\":\"10.1186/s13059-024-03386-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03386-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03386-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚类被广泛用于单细胞分析,但目前的方法在准确性、稳健性、易用性和可解释性方面都有局限。为了解决这些局限性,我们开发了一种集合聚类方法,该方法在硬聚类方面优于其他方法,且无需调整超参数。它还能进行软聚类,以描述类似连续体的区域并量化聚类的不确定性,在此通过绘制 MNIST 手写数字之间和下丘脑澹细胞亚群之间的连接性和中间转换图加以证明。这种超参数随机集合方法提高了单细胞聚类的准确性、鲁棒性、易用性和可解释性,可能在其他领域也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESCHR: a hyperparameter-randomized ensemble approach for robust clustering across diverse datasets
Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信