{"title":"基于多物理场法的 U3Si2 燃料和铁铬铝包层环形燃料行为分析","authors":"Mai Liu, Rong Liu, Shengyu Liu","doi":"10.1016/j.pnucene.2024.105438","DOIUrl":null,"url":null,"abstract":"<div><p>Safety, efficiency and economic benefits cannot be ignored in the development of nuclear energy. As a type of widely used fuel in nuclear reactors, solid fuel has limited potential, long investment return cycle of new nuclear reactors and great construction resistance. Addressing these challenges, two effective approaches involve the utilization of new fuel cladding materials, specifically Accident Tolerant Fuel (ATF), and the incorporation of novel fuel pellet structures to improve economic viability and safety. In this paper, an ATF of U<sub>3</sub>Si<sub>2</sub>-FeCrAl system with annular structure is analyzed based on a fuel behavior analysis code CAMPUS-ANNULAR. The assessment encompasses fuel performance under typical normal operating conditions and accident scenarios such as Loss of Coolant Accident (LOCA) and Reactivity Initiated Accident (RIA). By employing the solid fuel performance analysis code CAMPUS, a comparative work is conducted to evaluate the performance of the solid U<sub>3</sub>Si<sub>2</sub>-FeCrAl system under both normal and accident conditions. Results indicate that, during normal operation, the annular U<sub>3</sub>Si<sub>2</sub>-FeCrAl system with equivalent power density reduces peaking fuel temperatures by about 70 K–150 K in comparison to the solid U<sub>3</sub>Si<sub>2</sub>-FeCrAl system. This reduction enhances the temperature margin under accident conditions, subsequently lowering the risk of fuel meltdown. However, the annular U<sub>3</sub>Si<sub>2</sub>-FeCrAl system increases the risk of Pellet Cladding Mechanical Interaction (PCMI) failure under RIA condition.</p></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"177 ","pages":"Article 105438"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annular fuel behavior analysis of U3Si2 fuel and FeCrAl cladding based on multiphysics field method\",\"authors\":\"Mai Liu, Rong Liu, Shengyu Liu\",\"doi\":\"10.1016/j.pnucene.2024.105438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Safety, efficiency and economic benefits cannot be ignored in the development of nuclear energy. As a type of widely used fuel in nuclear reactors, solid fuel has limited potential, long investment return cycle of new nuclear reactors and great construction resistance. Addressing these challenges, two effective approaches involve the utilization of new fuel cladding materials, specifically Accident Tolerant Fuel (ATF), and the incorporation of novel fuel pellet structures to improve economic viability and safety. In this paper, an ATF of U<sub>3</sub>Si<sub>2</sub>-FeCrAl system with annular structure is analyzed based on a fuel behavior analysis code CAMPUS-ANNULAR. The assessment encompasses fuel performance under typical normal operating conditions and accident scenarios such as Loss of Coolant Accident (LOCA) and Reactivity Initiated Accident (RIA). By employing the solid fuel performance analysis code CAMPUS, a comparative work is conducted to evaluate the performance of the solid U<sub>3</sub>Si<sub>2</sub>-FeCrAl system under both normal and accident conditions. Results indicate that, during normal operation, the annular U<sub>3</sub>Si<sub>2</sub>-FeCrAl system with equivalent power density reduces peaking fuel temperatures by about 70 K–150 K in comparison to the solid U<sub>3</sub>Si<sub>2</sub>-FeCrAl system. This reduction enhances the temperature margin under accident conditions, subsequently lowering the risk of fuel meltdown. However, the annular U<sub>3</sub>Si<sub>2</sub>-FeCrAl system increases the risk of Pellet Cladding Mechanical Interaction (PCMI) failure under RIA condition.</p></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"177 \",\"pages\":\"Article 105438\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024003883\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024003883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Annular fuel behavior analysis of U3Si2 fuel and FeCrAl cladding based on multiphysics field method
Safety, efficiency and economic benefits cannot be ignored in the development of nuclear energy. As a type of widely used fuel in nuclear reactors, solid fuel has limited potential, long investment return cycle of new nuclear reactors and great construction resistance. Addressing these challenges, two effective approaches involve the utilization of new fuel cladding materials, specifically Accident Tolerant Fuel (ATF), and the incorporation of novel fuel pellet structures to improve economic viability and safety. In this paper, an ATF of U3Si2-FeCrAl system with annular structure is analyzed based on a fuel behavior analysis code CAMPUS-ANNULAR. The assessment encompasses fuel performance under typical normal operating conditions and accident scenarios such as Loss of Coolant Accident (LOCA) and Reactivity Initiated Accident (RIA). By employing the solid fuel performance analysis code CAMPUS, a comparative work is conducted to evaluate the performance of the solid U3Si2-FeCrAl system under both normal and accident conditions. Results indicate that, during normal operation, the annular U3Si2-FeCrAl system with equivalent power density reduces peaking fuel temperatures by about 70 K–150 K in comparison to the solid U3Si2-FeCrAl system. This reduction enhances the temperature margin under accident conditions, subsequently lowering the risk of fuel meltdown. However, the annular U3Si2-FeCrAl system increases the risk of Pellet Cladding Mechanical Interaction (PCMI) failure under RIA condition.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.